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ABSTRACT 

Evaluating the Energy and Carbon Footprint of Water Conveyance System and 
Future Water Supply Options for Las Vegas, Nevada 

 
by 

Eleeja Shrestha 

Dr. Sajjad Ahmad, Examination Committee Chair 
Assistant Professor 

University of Nevada, Las Vegas 
 

 Water production requires the use of energy to transport water from distant locations, 

pump groundwater from deep aquifers and treat water to meet stringent drinking water 

and wastewater regulations. Energy production based on its source involves the emission 

of greenhouse gases also known as carbon footprint, which is the leading cause of global 

warming and climate change. Because of growing concerns of global warming due to 

these emissions, water providers are required to analyze the energy and associated carbon 

footprint of existing water production facilities and future water supply options. A system 

dynamics model is developed to estimate the energy requirements and carbon footprint as 

its consequence to move water in the distribution laterals of the Las Vegas Valley. The 

model is also used to evaluate the two future supply options for the Las Vegas Valley: 

seawater desalination and water conveyance from distant locations using water 

conveyance infrastructures. The simulation results show that it requires significant 

amount of energy to lift water from water source to water treatment plants (0.3 million 

megawatt hours per year (MWh/y)) and then to distribute treated water in distribution 

laterals (0.55 MWh/y) in 2010. It requires more energy to distribute treated water (65%) 

when compared to lift water from source to treatment plants (35%). Different scenarios 

including change in population growth rate, water conservation, increase in water reuse, 
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change in the Lake level, change in fuel sources, change in emission rates, and 

combination of multiple scenarios are tested to evaluate the change in energy 

requirements and associated carbon footprint. The increase in water conservation resulted 

to be the most energy efficient option and consequently generated lower carbon footprint. 

The reduction of per capita water demand to 753 lpcd (199 gpcd) by 2035 lowered the 

energy requirements and associated carbon footprint by 16.5%. In addition, reuse of 

wastewater effluent within the Valley can be an excellent way of saving energy. 

However, reusing only 77 million cubic meters (MCM) (56 mgd) treated wastewater 

effluent by 2020 results in the decrease of energy consumption by nearly 3.6%. If 20% of 

the treated wastewater can be reused within the Valley besides status quo reuse (127 

MCM or 92 mgd), the energy consumption and associated carbon footprint is lowered by 

9% by the year 2035. Of the two water supply options, seawater desalination is more 

energy intensive (96% higher) as compared to the water conveyance from remote 

locations and the associated carbon footprint is 47% higher. However, desalination option 

is cost efficient. The unit cost of seawater desalination is $0.56/m3 and where as $0.68/m3 

for water conveyance from distant sources. 

Keywords: Water; Energy; Carbon footprint; Desalination; Transport; Cost; Las Vegas, 

NV; System Dynamics  
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CHAPTER 1 

INTRODUCTION 

Even though earth is referred as a “Blue planet”, the water scarcity has been alarming 

the world. The situation is getting worse as needs for water is increasing with population 

growth, urbanization and increase in household and industrial uses (WHO, 2009). Of the 

plentiful water on earth, only 2.5% of it is fresh (Oki et. al, 2006; Von Uexku�ll, 2004). 

Moreover, most of this fresh water is stored in deep groundwater or as glaciers that are 

not easily accessible. The adequate availability of fresh water is essential for growth and 

development of human civilization. Almost one fifth of the world's population lives in 

areas where the water is scarce and nearly one quarter of the global population, living in 

developing countries face water shortages due to a lack of infrastructure to fetch water 

from rivers and aquifers (Ringler et al., 2010; Stokes and Horvath, 2009; WHO, 2009). 

The demand for water has been increasing in many places with the growth in population 

and urbanization whereas the source of supply is limited. The recent drought in arid areas 

like the American Southwest can alter surface water flows and limit the availability of 

fresh supply of water, introducing the need of efficient water production strategies to 

meet the water needs (Benotti et al., 2010).  

 Water production requires the use of energy also known as energy footprint. Energy 

and water are intricately connected (Gleick, 1994). Without substantial input of energy 

either in the form of electricity or heat, major water transportations, desalination of 

brackish or seawater and massive pumping from groundwater aquifers would not have 

been easily possible. Similarly, the production and use of energy often require significant 

amount of direct or indirect water use. Water is required to mine an energy resource to 
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alter fuel properties, for the construction, operation and maintenance of energy generating 

facilities, for power plant cooling, and also for disposing waste products (Gleick, 1994). 

Thus, the conveyance of water requires extensive use of energy and similarly production 

of energy requires large volume of water (Gleick, 1994; Lampe et al., 2009; Rio Carrillo 

and Frei, 2009).The growing water demand may limit its use in energy production in 

future. Likewise, the increasing price of energy and depleting energy resources will 

constrain the ability to provide adequate fresh water.  

Almost all energy used in water production is in the form of electricity. The energy 

use in a water distribution network depends not only on the quantity of delivered water 

but also on the spatial distribution of the water sources, end users, the level of water 

treatment required, and other physical characteristics of the water system (Bakhshi and 

Demonsabert, 2009; Pelli and Hitz, 2000). High energy consumption is the major 

expense in water system. Pumping energy represents the main cost of water supply 

system and energy cost varies with amount of pumped water and energy tariff (Vieira and 

Ramos, 2009).  

Depending on the fuel source for electricity generation, energy use contributes to the 

carbon footprint, defined as the total set of greenhouse gas emissions released during an 

activity or over life stages of a product. The emission of greenhouse gases directly 

depends on the power generation fuel mix for a specific region (Bakhshi and 

Demonsabert, 2009). Many environmental problems may arise as a result of these 

emissions such as acid rain, air pollution and the major being the global warming (Cohen, 

1990). The resulting damages due to these emissions are termed as externalities. Neither 

the electric power rates reflect the associated social costs nor do ratepayers directly pay 
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these external costs (Carlin, 1995). Moreover, a typical cost-benefit analysis for the 

evaluation of water supply options does not consider these associated external costs. The 

concerns towards sustainable development and climate change have prompted the 

efficient use of electricity in water network (Kumar and Karney, 2007). For the 

sustainable implementation of water supply options required to meet the growing water 

demands, not only the capital cost and electricity cost of the system, but also the 

greenhouse gas emissions should be considered in the analysis. 

 

1.1 Research Motivation 

 During the early 1900s the sole water source for the Las Vegas was artesian wells. In 

1928, the Boulder Canyon Project Act apportioned Nevada 0.4 cubic kilometers (km3) 

(300,000 acre-feet) of Colorado River water per year (SNWA, 2009a; USBR, 2008). 

Since, the area was sparsely populated, groundwater seemed plentiful and this allocation 

was not used until mid 1950s. Currently about 90% of the water used in southern Nevada 

comes from Colorado River through Lake Mead (SNWA, 2009a). The remaining 10% is 

withdrawn from the deep groundwater aquifers to meet the peak water demand during 

summer (SNWA, 2010). Lake Mead is one of the primary reservoirs in the Colorado 

River system created in 1930s due to Colorado River flow obstruction by Hoover Dam 

(Allen, 2003). There are two intake pumping stations supplying water to the Las Vegas. 

The Las Vegas Valley is approximately 1200 feet above the Lake level. This requires 

massive energy for pumping water. As the Lake levels decline, the pumping energy 

requirements increase. The annual average inflow to the Lake Mead system was 66 

percent of the normal between 1999 and 2008 (SNWA, 2009a). The continuity of this 



www.manaraa.com

4 
 

drought condition can lead to two primary consequences: possible reduction in the 

amount of available Colorado River water and intake supply and operation challenges 

due to decline in water level at Lake Mead. 

 Under these conditions, the future water needs can be met either by reducing the 

demand or by augmenting the supply. The Southern Nevada Water Authority (SNWA), 

that manages the water resources in the Las Vegas, offers various water conservation 

programs some of which include: 

• Desert Landscaping 

• Pool Cover 

• Rain Sensor 

• Irrigation Controller 

• Water Smart Car Wash 

• Water Efficient Technologies 

• Water upon Request in Restaurants 

The application of these conservation programs decreased the annual water 

consumption by nearly 0.08 km3 (21 billion gallons) between 2002 and 2008, although 

there was a population growth of 400,000 during that period (SNWA, 2009b). 

Conversely, the increasing water demand and prolonging drought conditions have 

also introduced a need to pursue additional water resources. SNWA has been actively 

pursuing the development of additional in-state and out-of state water resources (Cooley 

et al., 2007). The resource development options considered by SNWA include:  

• Seawater Desalination 

• Clark, Lincoln and White Pine Counties Groundwater Development 
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• Water Banks in Arizona, Southern Nevada and California 

• Coyote Spring Valley and Three Lakes Valley Groundwater Rights 

• Pre-Compact Virgin and Muddy River Water Rights and Post-Compact Virgin 

River Water Rights 

• Augmentation Credits for in-state, non-Colorado River resources 

• Additional Conservation 

• Surplus and Interim Surplus Colorado River Water 

• Additional wastewater reuse 

This study will mainly focus on the energy consumption and the subsequent carbon 

footprint associated with the conveyance of water from source to the distribution laterals 

in the Las Vegas Valley and two potential future supply options: seawater desalination 

and Clark, Lincoln and White Pine Counties groundwater development. The conveyance 

of water in the distribution laterals in the Las Vegas Valley explores the current and 

future energy requirements and associated carbon footprint of moving water; and 

variations in the footprint due to change in population growth rate, water conservation, 

increase in wastewater reuse within the Valley, change in the Lake level, change in fuel 

sources, and change in emission rates. Seawater desalination is a paper-trade agreement 

between Nevada and California or Mexico in which Nevada will build a desalination 

plant in California or Mexico and in exchange pump equivalent amount of California or 

Mexico apportionment of Colorado River water from the Lake Mead. Clark, Lincoln and 

White Pine counties groundwater development option consists of the transfer of 

groundwater via buried pipeline from hydrographic basins in Lincoln and White Pine 

Counties located in northern Nevada. This water conveyance project from distant location 
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would approximately convey 304,000 cubic meters per day (m3/d) (90,000 acre-feet per 

year (afy)) of water, to the Las Vegas Valley. Both options considered for augmenting 

water supply to meet future water needs in the Las Vegas are associated with energy use 

and hence, increased carbon footprint. Due to potential future greenhouse gas emissions 

targets and rising energy costs, it necessitates the consideration of energy and carbon 

footprints when evaluating water supply options. 

 

1.2 Research Objective 

 There are two main objectives of this research which are as follows: 

• To determine energy consumption and associated carbon footprint of conveying 

water from Lake Mead to the Las Vegas Valley. This will involve evaluating 

variations on the footprint due to changes in population growth rate, water 

conservation, increase in wastewater reuse within the Valley, change in the Lake 

level, change in fuel sources, and change in emission rates. 

• To compare the two water supply alternatives: seawater desalination and water 

conveyance from distant location, in terms of cost analysis and associated carbon 

footprint based on the energy requirements for each alternative.  

In order to fulfill the above mentioned research objectives, the following research 

questions are investigated: 

1. What are the energy and carbon footprints of the current water supply system in 

the Las Vegas Valley? 

2. What are the energy and carbon footprints of the future water supply options for 

the Las Vegas Valley? 
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3. Which water supply option is more sustainable in terms of cost and carbon 

footprint? 

To investigate the research questions, a system dynamics simulation model is 

developed following the sequence of tasks as listed below: 

Task 1: A dynamic simulation model is developed to evaluate the sustainable water 

resource options that determine the energy requirements for water supply and 

conveyance for current and future supply options. 

Task 2: The model is calibrated and verified using historic data for population and 

water demand of the Las Vegas Valley. 

Task 3: The energy requirements to move water from source to the distribution 

laterals of the Las Vegas Valley are estimated. 

Task 4: The carbon footprint associated with the energy use is determined. 

Task 5: The two supply options are compared for their potential to increase water 

supply in terms of cost analysis and associated carbon footprint due to energy 

use. 

 

1.3 Scope of the Research 

 The energy use for moving water in the Valley considers only the energy 

requirements to pump water from source to the treatment plants and from treatment 

plants to the distribution laterals of the Valley. The distribution laterals end in storage 

tanks or reservoirs. The energy required to further distribute water to the end users is not 

considered in this study. Also, energy required for treating water in water and wastewater 

treatment plants is not considered. 
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The thesis is presented in a manuscript style. Chapter 2 and chapter 3 are presented in 

a way in which they will be submitted for publication. Chapter 2 describes the present 

and future energy requirements to move water in the Las Vegas Valley distribution 

laterals and reports associated carbon footprint. The impact or variation in the energy and 

associated footprint is analyzed testing different scenarios. Chapter 3 looks into the future 

supply options for the Las Vegas Valley and compares the two potential supply options in 

terms of cost, energy and associated carbon footprint. Conclusions followed by 

recommendations for further study are listed in chapter 4.  
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CHAPTER 2 

THE CARBON FOOTPRINT OF WATER TRANSPORT IN AN URBAN ARID 

REGION 

Abstract 

The growing concerns of global warming and climate change has forced water 

providers to scrutinize the energy for water production and the greenhouse gas (GHG) 

emissions associated with it. The carbon dioxide (CO2) emissions as an outcome of 

electricity use in the water conveyance system in the Las Vegas Valley located in 

Nevada, USA have been increasing with the population and economic growth. A system 

dynamics model is developed to estimate the energy requirements to move water from 

the water source to the distribution laterals of the Las Vegas Valley and to analyze the 

carbon footprint associated with it. The results show that at present nearly 0.85 million 

megawatt hours per year (MWh/y) energy is required for conveyance of water in 

distribution laterals of the Valley from Lake Mead, located 32.2 km (20 miles) southeast 

of the Las Vegas at an elevation of nearly 366 m (1200 ft) below the Valley, resulting in 

approximately 0.53 million metric tons of CO2 emissions per year. Considering the 

current mix of fuel source, the energy and CO2 emissions will increase to 1.34 million 

MWh/y and 0.84 million metric tons per year, respectively by the year 2035. Various 

water management scenarios including change in population growth rate, water 

conservation, increase in water reuse, change in the Lake level, change in fuel sources, 

change in emission rates, and combination of multiple scenarios are analyzed to study 

their impact on energy requirements and associated CO2 emissions. The results show that 

the fluctuation in Lake Mead levels considered in this study does not affect significantly 
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the total energy and associated CO2 emissions. However, conservation measures and 

increase in water reuse rate significantly lowers the future energy requirements. The 

reduction in per capita water demand to 753 lpcd (199 gpcd) by 2035 can lower the 

energy and associated CO2 emissions by nearly 16.5%. If 20% of the treated wastewater 

effluent other than status quo reuse amount is reused within the Valley, the energy 

requirements can be lowered by as much as 0.12 million MWh compared to status quo 

scenario by 2035 (9% reduction in energy use), sufficient enough to supply electricity for 

nearly 11,000 homes per year in the Unites States. However, the reuse rate is predicted to 

increase to 77 million cubic meters (MCM) (56 mgd) by 2020. This results in the 

decrease of energy use and associated emissions by nearly 3.6%. Similarly, change in 

population growth rate by ±0.5% can change the energy requirements and associated CO2 

emissions by nearly 12.8%. The combination scenario which includes water 

conservation, increase in reuse of treated wastewater effluent and increasing renewable 

resources in the fuel mix decrease the energy use by nearly 20.7% and associated 

emissions by nearly 46%, resulting to be the most efficient scenario. 

Keywords: Water conveyance; Energy; Carbon footprint; Arid region; Las Vegas, NV 

 

2.1 Introduction 

Water is the most vital element for the growth and development of human 

civilization. So, ensuring its sufficient supply is essential for human well-being (Oki and 

Kanae, 2006). The demand for water has been increasing in many places with the growth 

in population and economic development (Morrison et al., 2009). The world population 

almost doubled from 3 billion to 6 billion during a 40 year period from 1959 to 1999. 
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Current world population is approximately 6.8 billion, and is expected to reach to 9 

billion by 2035 (USCB, 2009). Satisfying the water needs of growing population requires 

increasingly large volumes of water.  

The quality of existing freshwater sources is declining due to increasing water 

pollution as untreated wastewater is directly disposed into natural water sources in most 

of the developing countries (Eltawil et al., 2009; Von Uexku�ll, 2004). In addition, over 

exploitation of groundwater is affecting the quantity of freshwater availability (Eltawil et 

al., 2009). This has introduced the need for efficient and sustainable water production 

strategies to ensure the availability of current and future water needs. Sustainable water 

production refers to satisfying the current needs while ensuring the availability of water 

to meet the future needs as well (Darwish et al., 2008). For this, it requires that the rate of 

use of renewable water resources both surface and groundwater should not exceed the 

rate of their regeneration.  

Water and energy are inextricably linked and both are equally important for economic 

and population growth (Lampe et al., 2009; Rio Carrillo and Feri, 2009). Water 

production involves extraction, treatment, transmission, distribution, use and disposal of 

water. This requires use of energy. Reduction in energy use is a major goal for 

sustainable development of water supply systems (Vieira and Ramos, 2009). Thus, water 

related energy use should be minimized. Because of the carbon footprint associated with 

energy generation, the rate of use of non-renewable energy resources (e.g. coal, oil, etc.) 

used in water production should not exceed the developing rate of their sustainable 

substitutes (Darwish et al., 2008). In order to maintain a safe and reliable water supply, 



www.manaraa.com

15 
 

environmental impacts of water production due to greenhouse gas emissions should be 

minimal (Darwish et al., 2008; Strutt et al., 2008). 

With the growth in population and economic development, cities expand and require 

the transport of water from remote sources using storage and delivery infrastructures such 

as reservoirs, dams, aqueducts, pipelines and pumping stations. Many cities which could 

not be supported by their local water resources have bloomed in the desert with water 

transported from hundreds and even thousands of miles away (Gleick, 2001). Bringing 

water from long distance sources requires massive water production infrastructure and 

extensive use of energy. Vast amount of energy is consumed to extract, process, and 

deliver clean water (Morrison et al., 2009). In fact, electricity used for the purpose of 

water transport compared to treatment and distribution is the major source of greenhouse 

gases and the corresponding carbon footprint for water provision, which thereby 

contributes to global warming and climate change (Stokes and Horvath, 2009). The 

related energy consumption depends not only on the quantity of water but also on the 

topography of the distribution network (Bakhshi and Demonsabert, 2009; Pelli and Hitz, 

2000;Reiling et al., 2009). Elevation and the distance from the water treatment plant play 

a significant role in the amount of energy consumption (Bakhshi and Demonsabert, 

2009). In other words, the spatial distribution of water users from water sources is the 

chief energy use determinant (Pelli and Hitz, 2000). The energy consumption in water 

production accounts for the major expense in water systems with pumping energy cost 

being the higher (Vieira and Ramos, 2009).  

Nearly 3-4% of the total US electricity use is for moving and treating water and 

wastewater (EPRI, 2002; Reiling et al., 2009; USDOE, 2006; USEPA, 2009a). Costs 
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associated with energy or electricity use accounts for nearly 80% of municipal water 

processing and distribution costs (EPRI, 2002). On average, 85% of this electricity is 

used for pumping water in the distribution system, 9% for pumping raw water to the 

treatment plant and 6% for the treatment processes (Reiling et al., 2009). The reduction in 

energy use can have dual benefits: reduction in the cost of water and reduction in 

emissions of GHGs. 

The use of energy contributes to carbon footprint. The carbon footprint is a measure 

of the total amount of greenhouse gases, expressed as carbon dioxide equivalents (CO2e), 

that directly and indirectly result from an activity or are accumulated over the life stages 

of a product (Strutt et al., 2008; Wiedmann and Minx, 2008). The principal greenhouse 

gases entering the atmosphere due to human activities and contributing most to the 

carbon footprint are carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and 

fluorinated gases such as hydrofluorocarbons, perfluorocarbons, sulfur hexafluoride, etc. 

(Strutt et al., 2008; USEPA, 2010a). Each of these gases has different potential to trap the 

heat in the atmosphere, the least being CO2. However, CO2 is produced in such a large 

quantity that all greenhouse gases are converted into CO2 equivalent (CO2e) to ease the 

calculation of the total footprint of all gases. For a 100 year time horizon, the global 

warming potential for anthropogenic GHGs as compared to CO2 is 21 for CH4, 310 for 

N2O, and for fluorinated gases it varies from 140 to 23,900 (Forster et al., 2007; USEPA, 

2009b). 

Since, the energy consumption required to move water from one location to another is 

the major contributor to carbon footprint, the efforts to lower carbon footprint mainly 

focus on the energy efficiency of water production (Strutt et al., 2008). Depending on the 
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source of energy for electricity generation, the size of carbon footprint varies. For 

example, fossil fuels have the highest carbon footprint where as renewable technologies 

such as geothermal, hydroelectric, solar, wind, etc have the lowest. The carbon footprint 

related to water in the U.S. accounts for 5% of all U.S. carbon emissions (Griffiths-

Sattenspiel and Wilson, 2009). The emissions due to water use are likely to increase in 

the future due to growing water demand, limited and remote locations of the freshwater 

sources, and stringent and energy intensive water treatment regulations and technologies 

(Griffiths-Sattenspiel and Wilson, 2009).  

At present the Las Vegas Valley gets most of its water from Lake Mead in the 

Colorado River, which is 32.2 km (20 miles) southeast of the Las Vegas (Feroz et al., 

2007). To move water from Lake Mead to the Valley requires nearly a lift of 365.8 

meters (m) (1200 feet (ft)), which consumes huge pumping energy and has an associated 

large carbon footprint. The main objective of this research is to estimate energy use and 

carbon footprint of conveying water from Lake Mead to the Las Vegas Valley and to 

evaluate change in energy use and footprint due to changes in population growth rate, 

water conservation, increase in wastewater reuse, change in the Lake level, change in fuel 

sources, and change in emission rates. 

 

2.2 Research Approach 

The potable water system of the Las Vegas Valley, Nevada, USA is used in this 

research to demonstrate how water conservation policies, water reuse, and fuel sources 

affect energy and carbon foot print of water transport.  The approach used here and the 
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policies tested, however, have broader application to potable water systems throughout 

the world. 

The Las Vegas is located in a semi-arid desert valley in Clark County in southeastern 

Nevada (Buckingham and Whitney, 2007; Gorelow and Skrbac, 2005). The Valley 

contains a drainage basin of about 4100 km2 (1,586 square miles) and runs from Spring 

Mountains in the west to Lake Mead in the east (Stave, 2003). It receives an average 

annual precipitation of 10.4 centimeters (cm) (4.1 inches) (Cooley et al., 2007). The study 

area is shown in Figure 2.1.  

The major water source for the Valley is Colorado River water passing through Lake 

Mead. Almost 90% of the water needs are met by Colorado River water (SNWA, 2009a). 

The remaining 10% comes from local groundwater sources (SNWA, 2010a). Nevada has 

the consumptive water use right of 0.4 km3 (300,000 acre-feet) of Colorado River water 

per year (LVVWAC, 2009). Southern Nevada Water Authority (SNWA), which manages 

the water supply and distribution to local water agencies in the Las Vegas Valley, 

operates two intake systems to lift Colorado River water from Lake Mead to either of its 

two water treatment plants, the Alfred Merritt Smith Water Treatment Facility 

(AMSWTF) and the River Mountains Water Treatment Facility (RMWTF). Drought 

conditions have caused decline in the Lake Mead water level and is expected to decline 

even more in coming years (Barnett and Pierce, 2008; Feroz et al., 2007; USBR, 2010). 

The existing intake pumping station 1 cannot be in operation if the Lake levels fall below 

320 m (1050 ft) above mean sea level (amsl) (Feroz et al., 2007). If Lake levels continue 

to decline as per the historic trend as shown in Figure 2.2, intake 1 may be out of 

operation before 2015. Thus, SNWA is building a third intake with design capacity of 53 



www.manaraa.com

 

 Figure 2.1: Study area: 
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Study area: Las Vegas Valley located in Southern Nevada 

 

Nevada  
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cubic meters per second (m3/s) (1,200 million gallons per day (mgd)) at an intake 

elevation of 305 m (1000 ft) amsl to assure the existing system capacity is kept if Lake 

levels fall below intake 1 (Feroz et al., 2007; SNWA, 2010b). 

 

 

Figure 2.2: Lake Mead elevation as compared to intake elevations (SNWA, 2009b; 

USBR, 2010) 

 

The schematic of water conveyance in the Las Vegas Valley is shown in Figure 2.3. 

Two major intake pumping stations and two booster pumping stations deliver water to the 

water treatment plants. The AMSWTF is designed to treat 26.3 m3/s (600 mgd) and 

RMWTF can treat up to 13.1 m3/s (300 mgd) (SNWA, 2010c). RMWTF is designed in 

such a way that it can expand to 26.3 m3/s (600 mgd) to meet future water needs (SNWA, 

2010c). The treated water from AMSWTF is transmitted to the Las Vegas Valley through  
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Figure 2.3: Schematic of water conveyance system in 
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: Schematic of water conveyance system in the Las Vegas Valley 
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five major laterals, namely, Boulder City lateral, East Valley lateral, North Las Vegas 

lateral, Pittman lateral and the Henderson lateral. The treated water from AMSWTF is 

also pumped to RMWTF through the Foothills pumping station when required. Similarly, 

treated water from RMWTF is distributed to the South Valley and R-8 laterals. In 

addition, untreated water from upstream of RMWTF is pumped to a golf course in 

Boulder City through Boulder City Raw Water pumping station. There are more than two 

dozen pumping stations at present to facilitate the conveyance of the treated water. The 

associated energy requirements and the corresponding carbon footprint of moving water 

are likely to increase in future because of increase in water demand due to population 

growth and the increased pumping head due to declining Lake level (static lift) and 

increased friction head (dynamic head).  

 The energy associated with pumping depends on the flow rate, pumping head, pump 

and motor efficiencies, and pump operating hours. The total dynamic head used in the 

calculation of pumping power incorporates only the head loss due to friction in the 

pipeline. The minor losses such as head loss at pipe bends, valves, etc. are not included in 

the calculation. Also, it is assumed that pumps are operated 90% of the time. The -energy 

calculation is only for moving water from the source to the distribution laterals. It does 

not include energy requirements for water moving in the potable water distribution 

system, or the energy requirements in the wastewater collection and treatment systems. 

The water distributed in the Valley is either used indoors or outdoors. The water used 

outdoor for landscape or in golf courses irrigation, due to the arid environment, is lost to 

the atmosphere through evaporation and evapotranspiration, contributes to shallow 

subsurface soil moisture, or flows to the Las Vegas Wash as urban runoff (Stave, 2003). 
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The indoor used water is sent to one of the three wastewater treatment plants. The treated 

effluent from the wastewater treatment plants is returned back to Lake Mead through the 

Las Vegas Wash. The Las Vegas Wash also receives urban runoff and intercepted 

shallow groundwater flows that account for return flow credits.  

According to Clark County Sewage and Wastewater Advisory Committee (SWAC) 

reports, 43% of the water supplied is currently used indoors, while 57% is used outdoors 

and is generally for landscape purposes. The indoor used water is treated in three 

wastewater treatment plants. Almost 90% of the treated effluent is discharged back into 

Lake Mead through the Las Vegas Wash while the remaining is used for landscape 

irrigation and cooling tower make-up water. Depending upon the amount of treated 

wastewater discharge, Nevada can actually withdraw more water than it is apportioned. 

This additional amount is known as return flow credits. The Las Vegas Wash flows are 

comprised of not only treated wastewater effluent, but also urban runoff, intercepted 

shallow groundwater, and stormwater. Nevada actually receives return flow credits only 

for the Colorado River water returned back to Lake Mead (LVWCAMP, 1999). Thus, 

return flow credits also account for Colorado River water contained in urban runoff and 

intercepted shallow groundwater due to over irrigation, also known as accruals or 

unmeasured returns, in addition to the treated wastewater effluent (LVWCAMP, 1999). 

However, Nevada does not get credits for returned stormwater and the Las Vegas Valley 

groundwater that ends up in the Las Vegas wash. 
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2.3 Method 

A dynamic simulation model using system dynamics (SD) is developed to facilitate 

the computation of energy use and carbon footprint of water conveyance through major 

laterals in the Las Vegas Valley. For this purpose, the SD software Stella® (www.hps-

inc.com) is used. Water resources management involves problems which often have long 

term effects and the complexity can be reduced by applying system dynamics (Winz et 

al., 2009). System dynamics is a method to understand behavior of complex systems over 

time, in which all objects interact with one another (Sterman, 2000). ). It is an appropriate 

method to fill the gap between the nature of the problem and the ability to understand it 

(Richmond, 1993). It involves the formation of simulation models of complete systems 

over time in which the variable components are linked with each other through feedback 

loops (Spang, 2007). Simulation models play an important role to understand the 

behavior of complex problems addressed in water resources management. System 

dynamics simulation models have been used over the years to address the water resources 

management problems (Winz et al., 2009) including water consumption model to 

understand the system behavior due to water saving, wastewater reuse and water transfer 

(Zhang et al., 2009), a simulation model for municipal water conservation policy analysis 

(Prashar and Ahmad, 2010), decision-support model for community-based water 

planning (Tidwell et al., 2004) and for investigating water trading/leasing and transfer 

schemes (Gastelum et al., 2010), water balance model for irrigation management (Khan 

et al., 2009), reservoir operation model (Ahmad and Simonovic, 2000) and spatial system 

dynamics model developed by integrating system dynamics and geographic information 

system (Ahmad and Simonovic, 2004) for flood management, object-oriented model for 



www.manaraa.com

25 
 

water resources policy analysis (Simonovic and Fahmy, 1999), and a simulation model 

for public understanding of the importance of water conservation (Stave, 2003).  

The SD model developed estimates the energy requirement and consequent carbon 

footprint of water supply and conveyance in the Las Vegas Valley and is comprised of 

three major sectors – water demand sector; water supply, distribution and wastewater 

collection sector; and carbon footprint sector. These sectors are directly or indirectly 

connected influencing the behavior of one another. 

The water demand sector computes total water demand and demand fulfilled by 

Colorado River water based on the population and per capita water demand for the 

simulation period ranging from 2003 to 2035. The population includes only permanent 

population of the Valley and does not include tourist population. The permanent 

population in the year 2003 was nearly 1.6 million, which gradually increased to around 

1.9 million in the year 2009 and is projected to reach approximately 3.2 million by the 

year 2035 (CBER, 2009). The historical annual population growth rate has averaged 

3.4% per year between 2003 and 2009, and the average annual forecasted population 

growth rate is estimated to be 1.6% (CBER, 2009). The future population growth rate 

used in the model is in accordance with the CBER forecasted growth rate. However, the 

model allows for variation of the future population growth rate. 

The per capita water demand in the Las Vegas Valley has decreased from 1,113 liters 

per capita per day (lpcd) (294 gallons per capita per day (gpcd)) in 2003 to 908 lpcd (240 

gpcd) in 2009 (SNWA, 2009c), and it is expected to decrease to 753 lpcd (199 gpcd) by 

the year 2035 (SNWA, 2009a). The total water demand is a function of population and 
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per capita water demand. The water demand to be fulfilled by Colorado River water is 

computed by subtracting the groundwater resource and wastewater reuse. 

 Water supply, distribution and wastewater collection sector is the main sector of the 

system that incorporates all the major pumping stations and computes the energy 

requirements. Water flow in the system shown in Figure 2.3 is captured in this sector 

along with the stocks and flows for water use in the Valley, wastewater collection, water 

reuse and discharge of treated effluent back into the Lake Mead.  

Carbon footprint sector calculates the associated carbon footprint of moving water in 

the system based on the energy source used in pumping water. Since, the source of 

energy used in the water conveyance system in the Las Vegas Valley has changed over 

time, the state of Nevada’s energy mix from 2003 to 2007 is used to calculate the historic 

carbon footprint of the water conveyance system in the Valley. For 2008 and later years, 

the 2007 Nevada’s energy mix is used as it is the latest available. However, the model 

provides the flexibility of varying state’s future energy mix. The electric power sources 

for the state of Nevada until 2006 were coal, natural gas, petroleum, hydroelectric power, 

and geothermal (USEIA, 2009). In 2007, solar/PV provided 0.13% of the state’s electric 

power supply as shown in Table 2.1.  

The total carbon footprint is then calculated using the CO2 emission rates. The 

emission rates vary depending upon the electricity generating plant efficiency, its 

technological options and carbon/heat content of the fuel when electricity generation is 

due to direct combustion of fuel (Evans et al., 2009; Weisser, 2006). The range of 

emission rates in gram CO2e per kilowatt hour (g CO2e/kWh) based on different studies 

is shown in Table 2.2. For the purpose of this study, the average of the emission rates 
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obtained from literature review, as listed in Table 2.2, is used to calculate the total carbon 

footprint of the system. 

 

Table 2.1: 2003 and 2007 electricity source distribution for the state of Nevada (USEIA, 

2009) 

Source 
Percent of total electric power sector consumption in 

2003 2007 
Coal 52.67 25.95 
Natural Gas 35.26 58.59 
Oil 0.06 0.03 
Hydro 5.35 6.57 
Geothermal 6.66 8.73 
Solar/PV - 0.13 

 

 

Different scenarios are evaluated to compare and quantify the energy use and CO2 

emissions associated with moving water in the Las Vegas Valley distribution laterals. A 

status quo scenario is simulated to provide a baseline for comparison of different policy 

options. The effects on energy and associated CO2 emissions due to various scenarios are 

evaluated. The scenarios include (i) Status quo, (ii) Change in estimated population 

growth rate, (iii) Water conservation, (iv) Water reuse increase (v) Change in the Lake 

level, and (iv) Combination of multiple scenarios. 

Status quo relates to the water transport to the Las Vegas Valley from the Lake Mead 

as it is currently, that is water is pumped from a static lift of  nearly 365.8 m (1200 ft) and 

a distance of 32.2 km (20 miles). Approximately 57% of the water pumped into the 

Valley is used for landscape irrigation and is lost to the soil and to the air through 
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infiltration and evapotranspiration. About 43% of the water used indoors ends up as 

wastewater. The wastewater is treated and returned back to the Lake Mead. 

The change in estimated population growth rate scenario involves the change in 

forecasted population growth rate by ±0.5%. The decrease in population growth rate 

would lower the water demand and less water would have to be pumped from the Lake 

Mead and vice versa. Water conservation by reducing indoor or outdoor water use can 

save significant amounts of energy. 

The water reuse increase scenario involves using the treated wastewater effluent 

within the Valley, for example as landscape and golf courses irrigation water. If treated 

wastewater is reused within the Valley, then less fresh water would be required to be 

pumped from the Lake Mead, lowering the pumping energy requirements and associated 

carbon footprint. 

The change in the Lake level affects the static lift from the Lake Mead for the intake 

pumping stations. The lower the lake level, higher the pumping head and higher pumping 

energy requirements and CO2 emissions as its consequence. The level below which 

intake pumping stations will not be in operation is not considered in this study. 

 A combination of multiple scenarios including water conservation, increase in reuse 

of treated wastewater effluent within the Valley and increase in the use of renewable 

energy sources is also evaluated. According to USEIA (2009), the percent use of 

renewable energy source for electricity generation is nearly 15% for Nevada and 54% for 

California. The increase in renewable energy sources for Nevada to 50% (nearly equal to 

that of California) is assumed to see the variation in the footprint. 
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Table 2.2: CO2 emission rates in g CO2e/kWh for different energy sources 

Reference 
Fuel type 

Coal Oil Natural gas Solar/PV Hydroelectric Wind Nuclear Biomass Geothermal 

USEPA, 2010b 1005.2 212 433 - - - - - - 

Evans et al., 
2009 

1004 - 543 90 41 25 - - 170 

Varun et al., 
2009 

- - - 9.4-300 18-74.88 16.5-123.7 - - - 

Fthenakis and 
Kim, 2007 

- - - 17-49 - 16-55 - - - 

Weisser, 2006 750-1250 500-1200 360-780 43-73 1-34 8-30 2.8-24 35-99 - 

Dones et al., 
2005 

- - 485-990 - - - 5-12 - - 

Hondo, 2005 975.2 742.1 518.8-607.6 26-53.4 11.3 20.3-29.5 22.2-24.2 - 15 

Meier et al., 
2005 

1006 742 466 39 18 14 17 46 15 

Dones et al., 
2003 

949-1280 519-1190 485-991 79 3-27 14-21 8-11 92-156 - 

Sample Size 8 7 11 11 9 12 9 5 3 

Average 1022.9 779.6 605.9 70.8 25.4 31.1 14 85.6 66.7 
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2.4 Results 

The SD model is developed to analyze energy requirements and associated carbon 

footprint as its consequence to move water in the conveyance system of the Las Vegas 

Valley. Before any policy is analyzed, the model should be verified against the observed 

data. Model verification provides a sense of credibility and confidence that the model is 

based on some level of reality and is able to replicate the historic behavior. The 7 year 

period from 2003 to 2009 is used as a verification period in the model and the 26 year 

period from 2010 to 2035 is used as a planning horizon with a yearly time step. The 

model was able to accurately replicate the historic population trend. The historic 

population data was obtained from Clark County Department of Comprehensive 

Planning, Demographics (www.accessclarkcounty.com). 

In a similar way, the model simulation for water demand of the Las Vegas Valley was 

comparable to historic water demand of the Valley. For the comparison, the historic 

water demand data was obtained from SNWA (2009c). The model was also tested for 

extreme conditions. Extreme condition tests check if the behavior of the model is 

appropriate when the extreme values are provided as an input (Sterman, 2000). Some of 

the extreme condition tests included zero population, no change in population and zero 

Lake level. In all these tests, the model behavior was as anticipated. 

2.4.1 Status Quo  

 For the status quo scenario, it is assumed that the population varies as predicted by 

CBER and the per capita demand is assumed to remain constant at 908 lpcd (240 gpcd) as 

in 2009 and onwards. Also, of the total water supplied, 43% is used indoors while the 

remaining is used outdoors. The reuse flow rate of treated effluent from wastewater 
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treatment plants is assumed to remain constant at nearly 30 million cubic meter (MCM) 

(22 mgd) in the year 2009 and onwards and assumed to remain constant onwards. The 

remaining treated effluent is returned back to Lake Mead through the Las Vegas wash. 

The supply of water is assumed to be unlimited. The Lake level does not fluctuate. There 

is no variation in the state’s fuel source for electricity. The same assumptions are used for 

other scenarios as well unless otherwise mentioned. Some of these assumptions are later 

explored through sensitivity analysis. 

For status quo scenario, Figure 2.4 shows the total energy and associated carbon 

footprint for moving water from source to the conveyance system in the Valley, and also 

in the disaggregate form in terms of moving water from source to water treatment plants 

and then from water treatment plants to the conveyance system of the Valley. The total 

energy consumption in the year 2009 is nearly 0.85 million MWh enough to light nearly 

77,000 homes on average for a year in the US, based on an average annual electricity 

consumption of 11,040 kWh for a US residential home in 2008 (USEIA, 2010)..  

It requires approximately 35% of the total energy use, on average, to lift water from 

Lake Mead to the water treatment plants. There are only four pumping stations for this 

purpose. As compared to more than 2 dozen pumping stations in the distribution system, 

35% of the total energy only to lift water from source to water treatment plants is 

substantial.  

There is a gradual rise in energy consumption from the historical period and the trend 

continues in the future as well. This is because demand for water has been increasing and 

is predicted to grow and the energy consumption is directly proportional to the water 

demand. The CO2 emissions are based on the state’s electricity mix and the emission 
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rates for each energy source (Table 2.2). The CO2 emissions gradually increased with 

each year till 2005 when there was a sudden drop of approximately 0.09 million metric 

tons of CO2 (nearly 15.5% drop) although the energy consumption during that period 

increased by 1.3%. This is due to the fact that in the year 2005, the coal consumption rate 

was decreased by nearly 45% and in turn the consumption rate of natural gas was 

increased approximately by the same amount. There was not much variation in the total 

energy consumption; however, because coal has higher CO2 emission potential as 

compared to natural gas (Table 2.2), there was a decrease in the total CO2 emission by 

nearly 0.09 million metric tons. 

 

 (a) Energy  (b) CO2 emissions

Figure 2.4: Energy for moving water from Lake Mead (LM) to water treatment plant 

(WTP), from WTP to distribution system (DS), and total energy for the whole system, 

and corresponding CO2 emissions 

 

0.2

0.4

0.6

0.8

1.0

1.2

1.4

2003 2013 2023 2033

E
n

e
rg

y

(m
il

li
o

n
 M

W
h

/y
)

Year

Total LM to WTP

WTP to DS

0.0

0.2

0.4

0.6

0.8

1.0

2003 2013 2023 2033

C
O

2
e

m
is

si
o

n
s

(m
il

li
o

n
 m

e
tr

ic
 t

o
n

s/
y

)

Year

Total LM to WTP

WTP to DS



www.manaraa.com

33 
 

The emission of greenhouse gases depend on the carbon content of the fuel, fuel 

categories such as black coal, brown coal, etc., electricity generation technologies such as 

steam turbine, open cycle gas turbine, combined cycle gas turbine, etc., thermal 

efficiency of fuel and plant capacity factor (IPCC, 2000; Lenzen, 2008). It can also vary 

based on locations. So, the use of average emission rate based on different literature 

review (Table 2.2) may not be a realistic scenario. To account for the uncertainty 

associated with it, a model scenario is run many times (thousand), each time with an 

uncertain emission factor chosen randomly by the model within the distribution of 

uncertainty specified initially to calculate the total CO2 emissions for water distribution 

(IPCC, 2000). A uniform distribution is chosen for the purpose because there is no useful 

information available on the distribution of emission factors (Winiwarter, 2001).  Figure 

2.5 shows the box plot of the range of total CO2 emissions associated with the water 

production in the Las Vegas Valley due to change in emission factor. The centre line in 

the rectangular box represents the median of the data set. The upper and lower lines of 

the rectangular box stand for the third quartile (75th percentile) and first quartile (25th 

percentile), respectively. The lines that extend from the rectangular box, also known as 

whiskers, give the minimum and maximum value of the data set. The CO2 emissions can 

vary between 0.73 million metric tons/y (first quartile) to 1.02 million metric tons/y (third 

quartile) in 2035.  
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Figure 2.5: Box plot of total CO2 emissions 

 

Figure 2.6 shows the CO2 emissions due to each source of energy. The total CO2 as 

shown in Figure 2.4(b) is due to the aggregation of CO2 due to individual energy sources 

in accordance with the state’s electricity mix. The non-renewable energy sources are the 

major contributors of total CO2 emissions except oil. The emission due to oil 

consumption and other renewable resources are almost negligible. The use of oil for 

electricity generation as compared to other sources is quite small.  
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Figure 2.6: CO2 emissions due to each source of energy 
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the decrease of total CO2 emissions by nearly 31.7% (0.27 million metric tons/y) by 

2035.  

 

 

Figure 2.7: CO2 emissions in Nevada due to varying non-renewable resource contribution 

in the total resource mix 
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requirements by 0.17 million MWh/y (adequate to light nearly 15,400 homes for a year in 

the US) or 0.11 million metric tons of CO2 per year by 2035. A 0.5% change in estimated 

population growth rate results in change in population by 0.41 million as compared to 3.1 

million status quo population in the year 2035. 

 

 (a) Energy  (b) CO2 emissions

Figure 2.8: Energy and corresponding CO2 emissions when annual population change 

rate is increased or decreased by 0.5% in the Las Vegas Valley 
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 (a) Energy  (b) CO2 emissions

Figure 2.9: Energy and associated CO2 emissions for indoor and outdoor conservation 

scenario 
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decrease by nearly 0.05 million MWh/y (sufficient for nearly 4,500 US residential homes 

on average) and associated CO2 emissions by nearly 0.03 million metric tons/y. The other 

scenarios are for reusing treated effluent other than status quo reuse amount at the reuse 

rate varying from 20% to 100% reuse. For example, reusing 20% of the treated 

wastewater (nearly 127 MCM or 92 mgd) within the Valley can reduce the energy 

requirements and the CO2 emissions by nearly 9% by 2035 as when compared with the 

status quo. This is a total decrease in energy consumption by 0.12 million MWh/y 

(enough to light 11,000 US homes on average for a year) and associated CO2 emissions 

by 0.08 million metric tons/y.  

 

 (a) Energy  (b) CO2 emissions

Figure 2.10: Energy and CO2 emissions when reuse is varied from 77 MCM reuse by 

2020 to 100% reuse at an increase interval of 20% 
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  2.4.5 Change in the Lake Level  

 The Lake level has been continuously declining since 1997 (Figure 2.2). If the Lake 

level declines to 320 m (1050 ft), the level below which intake 1 will be out of operation, 

the total energy requirements as compared to status quo (335 m (1099 ft) Lake level) will 

increase by 3.3%. Also, the CO2 emissions will increase by the same rate. Likewise, the 

rise in lake level to 350 m (1150 ft) will alter the energy and CO2 emissions by same ratio 

(Figure 2.11). 

 

 (a) Energy  (b) CO2 emissions

Figure 2.11: Energy and CO2 emissions when Lake level is altered 
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combination of these scenarios results in the decrease of energy use by 20.7% (0.28 

million MWh/y) and associated CO2 emissions by 46% (0.39 million metric tons/y) as 

compared to the status quo scenario adequate to light nearly 35,300 US homes on average 

for a year. 

 

 

(a) Energy 

 

(b) CO2 emissions

Figure 2.12: Combination of scenarios - water conservation, increase in reuse of treated 

wastewater, and increase in use of renewable energy sources 

 

2.4.6 Summary of Results 

 The summary of results due to above mentioned scenarios are shown in Table 2.3. 
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Table 2.3: Summary of results 

Scenario 
Energy 
(million 
MWh/y) 

CO2 
emissions 
(million 
metric 
tons/y) 

Percent change 
from status quo 

 

Status Quo 1.34 0.84   
Change in Estimated Population Growth Rate 
+0.5% 1.53 0.96 ±12.8% 

 -0.5% 1.18 0.74 
Water Conservation 1.12 0.71 -16.5% 
Water Reuse Increase to 77 MCM by 
2020 

1.3 0.81 -3.6% 

Change in the Lake Level 
+15m 1.3 0.82 ±3.3% 

 -15m 1.39 0.87 
Change in Resource Mix as 1:1 Non-
renewable to Renewable resource 

1.34 0.58 (-31.7%) 

Combination Scenario 1.07 0.46 -20.7% (-46%)* 
*The number in parenthesis is for CO2 emissions for respective scenario 

 

2.5 Discussion  

A system dynamics model was developed to analyze the energy requirements for 

water conveyance in the Las Vegas Valley and carbon footprint of the system as its 

consequence. This study explored the relationship of energy for water and associated CO2 

emissions. The model simulations showed that a significant amount of energy is required 

to satisfy the water needs of the Las Vegas Valley and it will increase substantially 

(nearly 58%) by the year 2035, provided that the population growth is as predicted by 

CBER. Similarly, CO2 emissions will rise to 0.84 million metric tons by 2035 (58% 

increase). Considerable amount of energy is required to pump water from Lake Mead to 

water treatment plants. It comprised nearly 35% of the total energy requirements for 

water production in Nevada, unlike US average of 9% for pumping raw water to the 
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treatment plant. However, the major portion of total energy requirement is consumed to 

move treated water in the distribution system (65%). In California, the water related 

energy use is 19% of the states’ total energy use which includes energy for conveyance, 

storage, treatment, distribution, wastewater collection, treatment and discharge (CEC, 

2007). 

 Population growth rate change scenario indicated that the change in population 

growth rate by even 0.5% (±0.41 million) can change the energy and CO2 emissions by 

12.8% as compared to status quo (3.1 million). Likewise, change in the Lake levels 

considered in this study did not vary the energy requirements and CO2 release by 

significant amount. But conserving water resulted in 16.5% reduction in energy 

consumption and associated CO2 emissions. Reducing water use can lower energy 

consumption by significant amount. For instance, Natural Resources Defense Council 

(NRDC) (2004) reported that applying water conservation measures in San Diego can 

save enough energy to provide electricity for 25% of all of the households in San Diego.   

 Increasing the reuse rate of treated wastewater effluent within the Valley can lower 

the energy requirements and associated CO2 emissions of moving water in the Las Vegas 

Valley by considerable amount. However, the increase in reuse to 77 MCM (56 mgd) by 

2020 within the Valley lowers the energy use by only 3.6%, sufficient enough to light 

approximately 4,500 US homes on average for a year based on an average annual 

electricity consumption of 11,040 kWh for a US residential home in 2008 (USEIA, 

2010). Reusing water is far less energy intensive than transporting water from distant 

source locations. A water recycling system in Orange County in California uses only half 

the amount of energy required to transport the same volume of water from northern 
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California (NRDC, 2004). This results in the reduction of CO2 emissions by 79% which 

is equivalent to taking nearly 500 cars off the road for a year (Taffler et al., 2008). 

 The combination of multiple scenarios including water conservation, increase in reuse 

of treated wastewater within the Valley and increase in the use of renewable sources 

decreased the energy requirements by nearly 20.7% and associated CO2 emissions by 

about 46%. This is the reduction in energy and associated CO2 emissions by 

approximately 0.28 million MWh/y and 0.39 million metric tons/y, respectively when 

compared with the status quo scenario. The combination scenario appears to be the most 

energy efficient scenario. However, it is just a hypothetical scenario and the subsequent 

change in water demand, reuse rates and fuel sources is difficult to achieve. 

This study focuses mainly on the energy consumption and CO2 emissions as its 

consequence in moving water in the Las Vegas Valley. Due to lack of data availability, 

some of the parameters are not included in the study. For instance, in this study, the flow 

in each of the pumping stations is based on the water demand, capacity of water treatment 

plants and capacity of reservoirs in the distribution system. The accurate prediction of 

energy requirements in each of the pumping stations could have been achieved if the 

water flow equations were developed based on the historical or actual flow at these 

stations. Also, the total dynamic head calculation required for power calculation included 

only head loss due to friction. Minor losses were ignored.  

Electricity mix for state of Nevada was considered in determining the energy source 

which comprised 85% non-renewable resources and 15% renewable resources. 

According to the Renewable Portfolio Standard (RPS), the percent share of renewable 

energy by 2025 should be 25% of the total energy use in Nevada (www.leg.state.nv.us). 
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This can be achieved by developing renewable resources which include but are not 

limited to biomass, fuel cells, geothermal energy, solar energy, hydropower and wind. 

However, the switch to renewable resources such as solar energy makes use of water as a 

cooling agent, thus increasing stress in water scarce region such as arid American 

southwest. Hence, the consideration of actual source of energy for electricity to be used 

in water conveyance system along with their possible consequences will provide more 

accurate estimate of the CO2 emissions. Moreover, this study considers only operational 

energy requirements. The complete life cycle energy analysis is beyond the scope of this 

research. The consideration of life cycle energy requirements will result in more accurate 

emission analysis because emissions can be both direct and indirect. Direct emissions are 

those that are released during the operation phase, while indirect emissions refer to those 

that are emitted during non-operational phase of the plant life cycle. The life cycle energy 

analysis for power plant sector will include the energy associated in the extraction, 

processing and transportation of fuels, building of power plants, production of electricity, 

waste disposal and finally decommissioning of the plant at the end of its life.  

 

2.6 Conclusions 

 Water management decisions should consider energy to improve the resource 

management. The reflection of critical link between water and energy in water planning 

and policy can lead to significant energy saving and reduction in the CO2 emissions 

associated with it. Water production requires energy. Energy production contributes to 

carbon footprint, the leading cause of global warming. Climate change in turn has greater 

potential to affect water supply. In Nevada, climate change may lead to greater risk of 
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drought or water shortages. Thus, the integration of energy issues into water policy 

decision making is important. 

 The conveyance of treated water in the distribution laterals dominates the energy use 

for water provision in the Las Vegas Valley. Saving water can be an excellent way to 

save energy and reduce CO2 emissions. Conservation eliminates the energy required to 

pump, move and treat fresh water from the source and also the energy required to collect 

it as wastewater, treat and dispose or reuse. In addition, the reuse of treated wastewater 

effluent within the Valley also appear to be an energy efficient water source because this 

would also eliminate the water transport energy requirements from source to the reuse 

points. 
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CHAPTER 3 

COMPARING DESALINATION VERSUS WATER CONVEYANCE FROM 

DISTANT LOCATIONS FOR CARBON FOOTPRINT AND COST 

Abstract 

The increasing water demand due to population and economic growth; and pollution 

and over exploitation of existing surface and groundwater sources has forced water 

providers to look for alternative sources of water supply. Almost 97% of the earths’ water 

is seawater. So, one of the potential and promising water supply options is seawater 

desalination by reverse osmosis. Since, reverse osmosis is a pressure driven membrane 

technology, it has high operational energy requirements and more greenhouse gas 

emissions are associated with it. However, for water stressed cities not located in coastal 

regions, seawater desalination may not be a feasible option. One option to satisfy the 

water needs for inland cities is to transport water from remote water source locations 

using water conveyance infrastructures including pipelines, pumping stations, regulating 

tanks, etc. This study compares the cost and the carbon footprint of two potential water 

supply options: seawater desalination and groundwater transport from remote locations 

using conveyance infrastructures. System Dynamics modeling, using the Software Stella, 

is used in the evaluation, employing the water resources system and future needs of the 

arid Las Vegas Valley, located in Nevada, US as an example case. The cost analysis is 

done for whole life (50 years) of the facility. Since, Las Vegas is not a coastal city, the 

seawater desalination supply option for the Valley is actually a paper- transfer agreement 

between Nevada and California or Mexico in which Nevada will build a desalination 

plant in the Pacific Ocean of California or Mexico and in turn will be allowed to 
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withdraw an equivalent amount of water from Lake Mead in the Colorado River. The 

conveyance option involves pumping water from the northern Nevada counties, located 

421 km away, to the Las Vegas Valley. The analysis showed that the energy for the 

seawater desalination option (0.53 million MWh/y) is 96% higher as compared to the 

water conveyance (0.27 million MWh/y). Similarly, associated CO2 emissions for 

seawater desalination supply option (0.25 million metric tons/y) is 47.5% higher than 

water transport option (0.17 million metric tons/y). However, the unit cost of water by 

seawater desalination option is lower ($0.56/m3) compared to water transport option 

($0.68/m3) because desalination plant is built in phases and requires lower initial capital 

cost as compared to the capital cost for water conveyance infrastructures.  

Keywords: Desalination; Water transport; Energy; CO2 emissions; Cost; Las Vegas; 

System dynamics 

 

3.1 Introduction and Objectives 

 Water systems are major users of energy and as a consequence produce greenhouse 

gases. Energy is consumed in every step of water production. Energy is required to 

transport water from remotely located water sources, or pump water stored in 

groundwater aquifers, and also required to treat it to meet stringent drinking water 

regulations (Gleick, 1994). The use of energy contributes to carbon footprint of water 

production. The carbon footprint is the measure of total quantity of greenhouse gases, 

expressed as carbon dioxide equivalents (CO2e), that directly and indirectly result due to 

an activity or is accumulated over the life stages of a product (Strutt et al., 2008; 

Wiedmann and Minx, 2008). 
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The water related energy demand has been increasing with the growth in population 

at most places. Moreover, pollution and over exploitation of groundwater aquifers and 

surface water; industrial and agricultural growth; higher living standards; and droughts 

are exerting stress on fresh water resources, requiring water managers to look for 

alternative and sustainable water supply options, which are more energy intensive (Agus 

and Sedlak, 2010; Fritzmann et al., 2007). Some of the supply options to meet the 

increasing water needs include desalination of seawater or brackish water, water transport 

from distant water source locations, application of water conservation measures and reuse 

of wastewater. Desalination and water conveyance from distant locations are two 

potential options to increase supply. 

Desalination is one of the alternative water sources gaining popularity as a feasible 

option for potable water production (Oh et al., 2009). A number of desalination 

technologies have been developed over years and they can be classified based on their 

separation mechanism as phase-change/thermal and membrane processes (Gilau and 

Small, 2008; Zhou and Tol, 2005). Some of the thermal desalination technologies include 

multi-stage flash distillation (MSF), multi-effect distillation (MED), vapor compression 

distillation (VCD), freezing, humidification/dehumidification and solar stills. The 

membrane processes comprise reverse osmosis (RO), nanofiltration (NF), and 

electrodialyis (ED). Of these technologies, MSF and RO are the most widely used 

technologies (Fritzmann et al., 2007). At present, high pressure RO is the most preferred 

technology for seawater desalination (Akgul et al., 2008; Darwish and Al-Najem, 2000). 

 Nearly 97% of the earth’s water stored in the ocean is too salty for anthropogenic 

uses with total dissolved solids (TDS) concentration more than 30,000 milligrams per 
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litre (mg/l) (Zhou and Tol, 2005). In the United States, drinking water regulations require 

TDS concentration to be less than 500 mg/l (USEPA, 2009). Hence, converting salty 

water for potable use using RO desalting technology requires intensive use of energy 

(Atikol and Aybar, 2005; Gilau and Small, 2008). Energy consumption for seawater 

desalting depends on several factors including feed water salinity concentration, physical 

and chemical characteristics of feed water, type of energy recovery system, operating 

conditions, location of the desalination plant, and plant capacity (Avlonitis et al., 2003). 

 Seawater desalination has been expanding rapidly in recent decades to supply water 

for municipal and industrial uses in arid, semi-arid or water-stressed regions (Zhou and 

Tol, 2005). Some of the water-stressed countries that currently meet their water supply by 

desalting include Cyprus, Israel, Saudi Arabia, Abu Dhabi, Australia, and USA (Florida, 

California). In Cyprus, the desalinated water totals nearly 40% of the total domestic water 

consumption (Tsiourtis, 2004). A number of desalination plants have come into operation 

recently including Hadera desalination plant in Israel and Kurnell desalination plant in 

Australia with a design capacity of 388,000 m3/d and 250,000 m3/d, respectively (Dreizin 

et al., 2008; El Saliby et al., 2009). Tampa Bay seawater desalination plant in Florida is 

the largest desalination facility in USA producing 94,000 m3/d of drinking water (Wolf et 

al., 2005). The declining desalination costs due to technological advances have also 

played an important role in the worldwide expansion of desalination technology (Dore, 

2004).    

Desalination is a promising technology for communities near coastal region. 

However, inland water stressed regions require the transport of water from remote 

sources using water transport and storage infrastructures such as pipelines, pumping 
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stations, reservoirs, dams, aqueducts, tunnels etc (Gupta and van der Zaag, 2008). Many 

cities with limited water resources to support their demand have bloomed in the desert 

with water transport from hundreds and even thousands of miles away (Gleick, 2001). 

The transfer of water from areas of relative abundance to the areas where water is scarce 

has evolved over centuries (Jain et al., 2005; Meador, 1992; Muller, 2000). A number of 

water transport schemes are currently operating in many countries such as Spain 

(Ballestero, 2003), South Africa (Gupta and van der Zaag, 2008; Muller, 2000), China 

(Cai, 2008; Gupta and Zaag, 2008, Liu and Zheng, 2002), Iran (Karamouz et al., 2010), 

Egypt (Lamei et al., 2007); and in many cities of the US including California (Hanak, 

2007),Virginia (Cox, 2007), Arizona (Hanemann, 2002) and many other cities of the 

world for industrial, domestic and irrigation uses. Conveying water from long distance 

water sources requires massive water production infrastructures and intensive use of 

energy. Substantial energy is consumed to extract, process, and deliver clean water 

(Morrison et al., 2009).  

 Since, the energy consumption either in desalination or in water transport is most 

likely the major contributor to carbon footprint, the efforts to lower carbon footprint 

should mainly focus on the energy efficiency of water production (Strutt et al., 2008). 

Depending on the source of energy for electricity generation, the size or the quantity of 

carbon footprint differs. For instance, fossil fuels have the highest carbon footprint where 

as renewable technologies such as geothermal, hydroelectric, solar, wind, etc. have the 

lowest. Water managers may be able to decrease the carbon footprint of water production 

by switching to or implementing renewable energy sources. According to a study by 

Griffiths-Sattenspiel and Wilson (2009), the carbon footprint related to water production 
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in the U.S. accounts for 5% of all U.S. carbon emissions. These emissions are likely to 

rise in the future due to growing water demand, limited and remote location of the 

freshwater sources, and stringent and energy intensive water treatment regulations and 

technologies.. The main objective of this research is to compare the two water supply 

alternatives: seawater desalination and water conveyance in terms of cost analysis and 

associated carbon footprint based on the energy requirements for each alternative. System 

dynamics modeling is used in the evaluation. The water supply needs of the arid Las 

Vegas Valley (LVV), located in Nevada, USA is used as the example case.  However, the 

method employed and the research findings can be applied to other communities with 

limited water resources. 

 

3.2 Water Supply Options 

3.2.1 Example Water System 

For the system dynamics model, the LVV water system is used as an example. The 

LVV located in an arid valley in Clark County in southern Nevada  has a drainage basin 

of about 4,100 km2 (1,586 square miles) and runs from Spring Mountains in the west to 

Lake Mead in the east (Buckingham and Whitney, 2007; Gorelow and Skrbac, 2005; 

Stave, 2003). The average annual precipitation in the Valley is 10.4 centimeters (cm) (4.1 

inches) (Cooley et al., 2007). Almost 90% of the Valley’s water demand is fulfilled by 

Colorado River water passing through Lake Mead (SNWA, 2009a), while the remaining 

comes from local groundwater sources (SNWA, 2010a). The consumptive water use right 

for Nevada is 0.4 km3 (300,000 acre-feet) of Colorado River water per year (LVVWAC, 

2009). Southern Nevada Water Authority (SNWA) manages the water supply and 
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distribution to local water agencies in the LVV withdrawing water from Lake Mead. 

Drought conditions have caused decline in the Lake Mead water level, and water level is 

expected to decline even more in coming years (Feroz et al., 2007; USBR, 2010). The 

persistence of this drought condition can lead to two primary consequences: possible 

reduction in the amount of available Colorado River water; and intake supply and 

operation challenges due to decline in water level at Lake Mead (SNWA, 2009b). In 

addition, possible increase in future water demands, estimated based on population 

projection by CBER, will require LVV to explore additional water supply options. 

The two potential future water supply options for the LVV considered include 

seawater desalination and conveyance of water from groundwater sources located 421 km 

(263 miles) from the LVV. Seawater desalination supply involves negotiating a paper-

transfer agreement with California or Mexico in which Nevada will build a desalination 

plant in California or Mexico and in exchange will pump California or Mexico 

apportionment of Colorado River water from Lake Mead, Nevada. Water conveyance 

from groundwater sources involves the transfer of groundwater via buried pipeline from 

hydrographic basins in Lincoln and White Pine Counties located in northern Nevada. The 

water conveyance from distant location plans to transport approximately 526,000 cubic 

meters per day (m3/d) (155,755 acre-feet per year (afy)) of water (SNWA, 2010b). 

However, SNWA has obtained the water rights for only 304,000 m3/d (90,000 afy) so far. 

So, this flow rate is used as a design flow rate for the comparison of the supply options. 

The water conveyance location and potential desalination sites are shown in Figure 3.1. 

Both options considered for augmenting water supply to meet future water needs in the 

LVV are associated with energy use and hence, increased carbon footprint. Due to 
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potential future greenhouse gas (GHG) emissions targets and rising energy costs, it 

necessitates the consideration of energy and carbon footprints when evaluating water 

supply options.  

 

 

Figure 3.1: Water conveyance pipeline location and potential desalination sites (SNWA, 

2010b; SNWA, 2009b)  
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3.2.2 Option 1-Seawater Desalination Supply  

Desalination is a process of separating dissolved solutes from seawater, brackish 

water or treated wastewater in order to bring the salinity to a level consistent with the 

drinking water standards. Based on the separation mechanism, it can be thermal or 

membrane based technology (Gilau and Small, 2008). Thermal desalination technology 

involves the separation of dissolved solutes by evaporation and condensation whereas in 

the membrane separation mechanism, water diffuses through a membrane, retaining 

almost all solutes. The decision for the type of desalination technology is influenced by 

several factors such as feed water salinity, required product water quality and various 

site-specific factors, which include labor cost, available area, energy cost and local 

demand for electricity (Fritzmann et al., 2007).  

Reverse osmosis (RO) is currently the fastest growing technology for water 

desalination (Peinemann and Nunes, 2010). RO is a pressure-driven desalination process, 

which uses a semi-permeable membrane to remove salts or other dissolved solutes from 

water. It is a continuous separation process in which there is no backwash (Crittenden et 

al., 2005). Osmosis is the process of movement of water from a low concentration zone to 

a higher concentration zone through a partially permeable membrane. The application of 

excess pressure on the higher concentration zone can reverse the process, which is known 

as reverse osmosis (Alghoul et al., 2009). So, in reverse osmosis, the hydrostatic pressure 

must exceed the osmotic pressure of the saline solution for the water molecules to pass 

from the high concentrated solution to the low concentrated solution through the semi-

permeable membrane. The feed water is then separated into two parts: one more 

concentrated in dissolved salts called concentrate or brine and the other almost pure 
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called permeate. The permeate stream exits at nearly atmospheric pressure while the 

concentrate remains nearly at the feed pressure.  

Location of Desalination System and Flow Rate  

In this research, the seawater reverse osmosis (SWRO) desalination facility is 

assumed to be built in California. The design flow for the comparison purpose is 304,000 

m3/d (90,000 afy). Since, RO facility can be built in phases, it is assumed in the analysis 

that the RO facility with a capacity of 60,800 m3/d (18,000 afy) will be built in the initial 

phase and the capacity will be increased every five years after the operation of the first 

plant ending up with the total design flow of 304,000 m3/d (90,000 afy) at the end of 20 

years. Building RO facility in phases is possible because membrane systems can be built 

in modules and added as water demand increases. For the analysis, the assumed 

installation year of the first phase is 2011 and the final installation year to meet the total 

design flow is 2032. The construction period is assumed to be 2 years for each phase.   

3.2.3 Option 2-Water Conveyance from Distant Locations 

This option involves conveying the same amount of water from northern Nevada as 

that obtained from desalination.  In the case of the LVV, SNWA currently holds 

approximately 304,000 m3/d (90,000 afy) groundwater rights to be conveyed to the LVV 

in the hydrographic basins of Spring Valley, Cave Valley, Dry Lake Valley and Delamar 

and the remaining is pending applications for groundwater rights in Snake Valley. Hence, 

for the analysis purpose the design flow is assumed to be 304,000 m3/d (90,000 afy) and 

all the facilities, as proposed by SNWA (2010b), are considered in the analysis except for 

the facilities in Snake Valley. The water conveyance from distant location includes the 

construction and operation of groundwater production facilities such as wells and pumps, 
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water conveyance and treatment facilities. The treatment facilities required is assumed to 

be for disinfection only.  

Proposed Facilities 

The proposed facilities for the groundwater transfer considered for this study are as 

follows: 

• Groundwater production wells are estimated to be 69 in number in average, 457 m 

(1,500 feet (ft)) deep and yielding 4,361 m3/d (800 gallons per minute (gpm)) of 

water. 

• Approximately 421 kilometers (km) (263 miles) of buried main and lateral water 

pipelines, varying from 76 centimeters (cm) (30 inches (in)) to 183 cm (72 in) in 

diameter. 

• Three pumping station facilities. 

• Five regulating tanks, each with capacity of approximately 38,000 m3 (10 million 

gallons). 

• One buried storage reservoir with 152,000 m3 (40 million gallons) capacity. 

• Up to 304,100 m3/d (80 million gallons per day (mgd)) water treatment facility. 

The hydrographic basins and corresponding permitted groundwater rights and 

applications considered in the analysis from each hydrographic basin are tabulated in 

Table 3.1. The pipeline and pumping station configurations considered for the 

groundwater conveyance are as listed in Table 3.2 and Table 3.3, respectively. 
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Table 3.1: Groundwater rights and applications planned to be conveyed from distant 

location (SNWA, 2010b) 

Hydrographic Basin 
Ground water rights and applications 

m3/d afy 
Spring Valley 230,000 68,000 
Cave Valley 15,800 4,678 
Dry Lake Valley 39,100 11,584 
Delamar Valley 8,400 2,493 
Total 293,300 86,755 

  

 

Table 3.2: Pipeline configuration (SNWA, 2010b) 

Pipeline 
Diameter  Length 
cm in km miles 

Main pipeline 183 72 325 203 
Spring Lateral 137 54 61 38 
Cave Lateral 76 30 35 22 

Total 421 263 
 

 

Table 3.3: Pumping station configuration (SNWA, 2010b) 

Pumping Station 
No. of  

pumps1 
Pump horsepower 

Total dynamic  
head2 

HP m ft 
Spring Valley North Pumping Station 6 500 53 175 
Spring Valley South Pumping Station 10 1250 137 450 
Lake Valley Pumping Station 11 1250 152 500 

1 Includes one standby unit. 
2 Based on the SNWA pump station design 

 

The two scenarios are evaluated for water conveyance from distant locations using 

groundwater conveyance from northern Nevada counties to the LVV, as an example case: 
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(i) Limited supply and (ii) Full supply. In limited supply scenario, it is assumed that the 

water from northern counties will be transported only when the demand cannot be 

fulfilled by the existing Colorado River water resources and the LVV groundwater 

resources. In order to save the energy required to transport water from northern counties, 

it is assumed that the water deficit will be fulfilled from the sources nearer to the LVV. 

Distant sources will be explored only when the nearer sources are not sufficient to satisfy 

the LVV needs. The groundwater source locations in terms of closeness to the LVV can 

be assorted as Delamar Valley, Dry Lake Valley, Cave Valley and Spring Valley being 

the farthest one. In full supply scenario, it is assumed that the water from northern 

Nevada counties is transported at design flow throughout the year (304,000 m3/d). 

 

3.3 Research Method 

3.3.1 RO Design 

The design of an RO system typically depends on the characteristics of the feed 

water, treated water quality and quantity requirements. The major design parameters 

involved in the RO design are shown in Table 3.4. 

IMSdesign software by Hydranautics (www.membranes.com) is used in the design 

and for the analysis of energy requirements for SWRO. The main inputs to the model 

include the feed water type, its chemical characteristics, pH, temperature, desired product 

recovery percentage and the permeate flow rate. Then, a configuration of a number of 

passes, number of stages in each pass, number of pressure vessels in each stage, number 

of elements in each pressure vessel and the type and age of membrane is determined. 

After performing the calculations, the model provides the required feed pressure to obtain 
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the desired recovery, power requirements, chemical dosing requirements and other 

membrane element parameters.  

 

Table 3.4: Major design parameters and fundamentals of RO design 

Parameter Unit Value/ Equation Fundamentals Reference 
Permeate Flow 
rate 

m3/d 60,800 Design flow - 

Water flux (Jw) L/m2.h.bar kw(∆P-∆π) Mass balance 
Crittenden et 
al., 2005 

Solute flux (Js) mg/m2.h ks(∆C) Mass balance 
Crittenden et 
al., 2005 

Osmotic 
pressure (π) 

bar 1.12*(273+T)*Σmi 
van’t Hoff 
equation 

Cheremisinoff, 
2002 

Concentration 
polarization 
mass transfer 
coefficient 
(kCP) 

m/s 
0.023*

��
��

*(Re)0.83*(Sc)0.33 Gilliland 
correlation 

Crittenden et 
al., 2005 

Concentration 
polarization 
factor (β) 

- 
exp� ��

	
�
�*Rej+(1-Rej) 

 

Film theory 
and mass 
balance 

Crittenden et 
al., 2005 

Salt rejection 
(Rej) 

- 1- ��
��

 Mass balance 
Crittenden et 
al., 2005 

Recovery (r) - 
��
��

 Flow balance 
Crittenden et 
al., 2005 

Solute 
concentration 
(CC) 

mg/l CF=�����������
��� � Mass and flow 

balance 
Crittenden et 
al., 2005 

Reynolds 
number (Re) 

- 
��� 
µ

 
Fluid 
mechanics 

Crittenden et 
al., 2005 

Schmidt 
number (Sc) 

- 
µ

�!"
 Diffusion 

Crittenden et 
al., 2005 

Hydraulic 
diameter (dH) 

m 
4�$%&' ()&** *+(,-&.�

'+,,+� /+)-0+,+)  

Fluid 

mechanics 
Crittenden et 
al., 2005 

where,  kw = mass transfer coefficient for water flux 
ks = mass transfer coefficient for solute flux 
∆P = applied pressure gradient 
∆π = osmotic pressure gradient 
∆C = concentration gradient across membrane 
T = absolute temperature 
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Σmi = sum of molality concentration of all constituents in feed water 
DL = diffusion coefficient 
CP = concentration in permeate 
CF = concentration in feed water 
QP = permeate flow rate 
QF = feed water flow rate 
ρ = feed water density 
v = velocity in feed channel 
µ = feed water dynamic viscosity 
 

 

The raw seawater quality parameters used in the design of SWRO system are 

obtained from Agus and Sedlak (2009) and Ladner et al. (2010) (Table 3.5). The 

permeate flow rate of 60,800 m3/d (16 mgd) is used in the design with an average flux 

rate of 13.6 litre per square meter per hour (l/m2-hr). A single pass two stage design is 

considered. A 20.32 cm (8-inch) membrane element, SWC5, with an active membrane 

area of 37.1 m2 (400 square feet (ft2)) by Hydranautics is used. The membrane 

specifications are shown in Table 3.6. There are 500 pressure vessels in the first stage and 

334 pressure vessels in the second stage with a total of 834 number of pressure vessels in 

the design. Each pressure vessels contains 6 membrane elements.  

 

Table 3.5: Raw seawater quality for the SWRO design  

(Agus and Sedlak, 2009; Ladner et al., 2010) 

Analyte Units Concentration 
pH pH Units 7.9 
Temperature °C 21 
Calcium mg/l 200 
Magnesium mg/l 650 
Sodium mg/l 5200 
Potassium mg/l 190 
Ammonia nitrogen mg/l 0.1 
Strontium mg/l 7.4 
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Analyte Units Concentration 
Bicarbonate alkalinity mg/l 110 
Sulfate mg/l 3000 
Chloride mg/l 19000 
Fluoride mg/l 0.9 
Boron mg/l 2.4 
Silica mg/l 3.5 

 

 

Table 3.6: SWC5 membrane specifications (Hydranautics, 2009) 

Parameter Description 
Membrane type Composite polyamide spiral wound 
Maximum operating temperature 45°C (113°F) 
Maximum operating pressure 8.27 Mpa (1200 psig) 
Maximum pressure drop 0.7 bar (10 psi) 
pH range 2-11 

Maximum feed flow 17 m3/h (75 gpm) 
Maximum feed SDI 5 
Maximum chlorine concentration <0.1 ppm 
Single element recovery 10% 

Active surface area 37.1 m2 (400 ft2) 
Salt rejection 99.8% 
Boron rejection 92% 

 

  

As SWRO is a pressure-driven membrane process, the major portion of the energy 

required for the SWRO facility is consumed by the high pressure pumps. More than 50% 

of the energy supplied by the high pressure pumps is lost with the ejected brine of the RO 

modules (Wang et al., 2010). The energy cost in the SWRO process is usually about 30% 

to 50% of the total production cost of water and depending on the cost of electricity, it 

can be as much as 75 % of the operating cost (Farooque et al., 2004; Stover, 2008). Thus, 
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it is important to recover the pressure energy using energy recovery devices (ERDs) 

otherwise lost in the reject stream. There are two different types of ERDs currently in 

use: the positive displacement type and the centrifugal type (Peñate et. al, 2010; Wang et 

al., 2010). With the use of positive displacement type ERD such as pressure/work 

exchanger, the pressure energy in the brine stream can be recovered by as much as 60% 

and used in the feed stream to decrease the overall energy requirements for the SWRO 

process (Stover, 2008). The positive displacement type ERD has become one of the most 

efficient ERDs and has been globally adopted for SWRO desalination (Peñate et. al, 

2010). Figure 3.2 shows the schematic of two stage RO process with and without using 

ERD. For this study, the RO is also designed with and without using ERD. 

The seawater desalination water supply option for the LVV incorporates the 

construction and operation of an SWRO facility in California and in exchange requires 

the pumping of equivalent entitlement of Colorado River water from Lake Mead. Thus, 

the total energy requirements should also include the energy requirements for water 

conveyance in the existing water conveyance facility operated by SNWA in the LVV. 

Hence, the total energy requirement for seawater desalination supply option are divided 

into two components and addressed as SWRO and water conveyance in the LVV lateral 

in this study. SWRO component includes the operating energy requirements of the 

SWRO facility in California. The other component - water conveyance in the LVV lateral 

includes only the energy requirements for water conveyance from Lake Mead to Grand 

Teton Reservoir through East Valley Lateral. The details of the water conveyance 

network in the LVV are shown in Figure 3.3 highlighting the water path from Lake Mead 

to East Valley Lateral. This lateral is selected because it is assumed that the water 
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transported from distant location

lateral near Grand Teton reservoir. 

 

Figure 3.
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transported from distant location will be delivered around the periphery of the end of this 

lateral near Grand Teton reservoir.  

(a) without ERD 

(b) with pressure/work exchanger as ERD 

Figure 3.2: Schematic of two stage RO system 

periphery of the end of this 
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Figure 3.3: Schematic of water conveyance system in 
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Schematic of water conveyance system in the Las Vegas Valley
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3.3.2 System Dynamics Model 

 A system dynamics (SD) simulation model is developed to facilitate the computation 

of energy use and carbon footprint of water conveyance through major laterals in the 

LVV and the energy required to pump approximately 457 m (1500 ft) deep groundwater 

to the surface and convey it from a distance of 421 km (263 miles) to the Valley.  

The SD model developed estimates the energy requirement and consequent carbon 

footprint of existing water supply and conveyance in the Las Vegas Valley and future 

supply option of conveying water from distant location. It is comprised of four major 

sectors – water demand sector; water supply, distribution and wastewater collection 

sector; groundwater conveyance sector and carbon footprint sector. These sectors are 

directly or indirectly connected influencing the behavior of one another. 

The water demand sector basically computes total water demand and demand fulfilled 

by Colorado River water based on the population and per capita water demand for the 

simulation period ranging from 2003 to 2035. The population includes only permanent 

population of the Valley and does not comprise tourist population. The total water 

demand is a function of population and per capita water demand.  

Water supply, distribution and wastewater collection sector incorporates all the major 

pumping stations and computes the energy requirements. Water flow in the system shown 

in Figure 3.3 is captured in this sector along with the stocks and flows for water use in the 

Valley, wastewater collection, water reuse and discharge of treated effluent back into the 

Lake Mead.  

Groundwater conveyance sector includes the computation of the energy requirement 

of pumping groundwater to the surface and moving water from distant location to the 
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LVV.  The pumping facilities 

pumping energy for groundwater extraction.

 

Figure 3.4: Proposed facilities for 
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The pumping facilities depicted in Figure 3.4 are captured in the model along with 

pumping energy for groundwater extraction. 

: Proposed facilities for water conveyance from distant location

2010b) 

are captured in the model along with 

 

water conveyance from distant location (SNWA, 
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Carbon footprint sector calculates the associated carbon footprint of pumping and 

moving water in the system based on the energy source used in pumping water. The 2007 

Nevada’s energy mix is used as source of energy as it is the latest available. However, the 

model provides the flexibility of varying state’s future energy mix. The total carbon 

footprint is calculated by multiplying the energy use with the CO2 emission rates. The 

basics of carbon footprint computation are described in the following section. 

The SD model is also used to calculate the energy requirements and associated CO2 

emissions for one component of seawater desalination supply option-water conveyance in 

the LVV lateral. The energy use for moving water from Lake Mead to Grand Teton 

Reservoir through East Valley Lateral (Figure 3.3) only is considered for this 

computation. 

3.3.3 Carbon Footprint Computation 

The carbon footprint of the supply alternatives is calculated assuming that the source 

of energy for electricity generation is distributed as shown in Table 3.7. The average of 

the CO2 emission rates, estimated from published studies and summarized in Table 3.8 is 

used in the calculation of the carbon footprint of the system. These CO2 emission rates 

can vary depending upon the electricity generating plant efficiency, its technological 

options and carbon/heat content of the fuel when electricity generation is due to direct 

combustion of fuel (Evans et al., 2009; Weisser, 2006). 
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Table 3.7: 2007 electricity source distributions used in the computation (USEIA, 2009) 

Source 
Percent of total electric power sector consumption  

Nevada California 
Coal 25.95 1.20 
Oil 0.03 1.15 
Natural gas 58.59 43.97 
Solar/PV 0.13 0.28 
Hydroelectric 6.57 13.80 
Wind - 2.82 
Nuclear - 19.18 
Biomass - 3.65 
Geothermal 8.73 13.95 

 

 

3.3.4 Cost Analysis 

 The two supply options as discussed in previous sections are compared for energy 

use, associated carbon footprint and cost. Cost analysis is done using the Net Present 

Value (NPV) method. To calculate the unit cost of water, the cost items are projected 

over the life cycle of the water supply alternative using Engineering News Record 

Construction Cost Index (ENR CCI) for capital costs and average inflation rate (2.5%) 

based on the inflation rate of last 10 years for annual operation and maintenance cost 

(ENR, 2010). For seawater desalination supply alternative, it is assumed that the RO 

facility with equal capacity is added every five year after the operation of the first facility. 

At the end of 25 years life time of the facility, the plant is dismantled and the new RO 

facility with same capacity is installed in its place. This process is continued for 50 years 

life cycle since the operation of first facility. Hence, the cost analysis also includes the 

dismantling cost and it is assumed to be 10% of the total capital cost. At the end of 50 

years of operation, not all of the installed RO facility will have completed its life span of 

25 years. Thus, to account for the unused life of the facilities, straight line depreciation is  
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Table 3.8: CO2 emission rates in g CO2e/kWh summarized based on literature review 

Reference 
Fuel type 

Coal Oil Natural gas Solar/PV Hydroelectric Wind Nuclear Biomass Geothermal 

USEPA, 2010 1005.2 212.03 432.96 - - - - - - 

Evans et al., 
2009 

1004 - 543 90 41 25 - - 170 

Varun et al., 
2009 

- - - 9.4-300 18-74.88 16.5-123.7 - - - 

Fthenakis and 
Kim, 2007 

- - - 17-49 - 16-55 - - - 

Weisser, 2006 750-1250 500-1200 360-780 43-73 1-34 8-30 2.8-24 35-99 - 

Dones et al., 
2005 

- - 485-990 - - - 5-12 - - 

Hondo, 2005 975.2 742.1 518.8-607.6 26-53.4 11.3 20.3-29.5 22.2-24.2 - 15 

Meier et al., 
2005 

1006 742 466 39 18 14 17 46 15 

Dones et al., 
2003 

949-1280 519-1190 485-991 79 3-27 14-21 8-11 92-156 - 

Sample size 8 7 11 11 9 12 9 5 3 

Average 1022.9 779.6 605.9 70.8 25.4 31.1 14 85.6 66.7 
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used to calculate the salvage value at the end of the 50 years life span. The cost items also 

include the cost of moving Lake Mead water in the LVV lateral and the cost of water 

treatment in the existing water treatment facilities. The existing infrastructures of the 

water conveyance system in the LVV have the capacity to pump and treat additional 

volume of water considered for the comparison purpose. The unit cost of water is then 

obtained by converting all cost items to net present value using discount rate of 6% per 

annum and dividing it by total volume of water produced during the entire life of the 

project. 

Similarly, the cost items for water conveyance from distant locations are based on the 

cost items estimated by Texas Water Development Board (TWDB) (2010). The cost 

items are then multiplied by city cost index (1.16) to obtain the cost for the Las Vegas 

(ENR, 2010). The unit cost of water is then calculated by projecting the cost items over 

the life cycle of the water transport facility, which is assumed to be 50 years, using ENR 

CCI for capital costs and average inflation rate (2.5%) for annual operation and 

maintenance cost. Also, the unit cost of water is calculated each year during the entire life 

of the two water supply facilities using annualized method in which each cost items is 

projected over the life of the supply facility using discount rate of 6% per annum.  

 

3.4 Results and Discussion 

3.4.1 Option 1-Seawater Desalination Supply 

RO Design without Using ERD 

For seawater desalination without using ERD, the RO design reveals that a maximum 

pressure of 63.7 bar must be applied to the feed water and the concentrated brine flows 
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out of the system at 60.8 bar with a design recovery of 54%. The TDS concentration in 

the permeate water is reduced to 311 mg/l from 35,398 mg/l. The energy required for the 

RO process is 4.34 kWh/m3 of treated water.  

RO Design Using ERD 

In this case, the maximum required applied pressure to the feed water is 65.7 bar and 

the concentrated brine flows out of the system at 62.8 bar with a design recovery of 54%. 

In order to recover the pressure energy of the concentrate stream, a pressure/work 

exchanger is used as the ERD. A boost pressure of 2.9 bar is required to overcome the 

pressure drop in the membrane system. The TDS concentration in the permeate water is 

reduced to 322 mg/l from 35,398 mg/l. Compared to the TDS concentration in the 

permeate water in the absence of ERD, the TDS concentration increased by 3.6%. 

However, the permeate TDS concentration is within the U.S. Environmental Protection 

Agency (USEPA) goal requirements of 500 mg/l for drinking water (USEPA, 2009). The 

energy required for the RO process is 2.56 kWh/m3 of treated water. The energy use 

decreased by nearly 41% as compared with the RO system with no ERD. 

Figure 3.5 shows the energy and associated CO2 emissions for the seawater 

desalination supply option for the LVV with and without using ERD. The energy and 

associated CO2 emissions for seawater desalination supply option are divided into two 

components: SWRO and water conveyance in the LVV lateral. SWRO represents the 

operational energy requirements and associated CO2 emissions to run an SWRO facility 

in California. Water conveyance in the LVV lateral is the energy and associated CO2 

emissions of lifting and moving equivalent amount of water in the LVV lateral. At the 

beginning of the operation, the energy and corresponding CO2 emissions are lower and as 
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new RO modules are installed in the future, the energy requirements and associated CO2 

emissions increase with the plant capacity. This water supply alternative requires nearly 

0.71 million MWh of total energy per year by 2035, which results in the total CO2 

emissions of approximately 0.3 million metric tons per year by 2035 when ERD is not 

used.  

The use of ERD results in the decrease of total energy requirements by nearly 25%. 

Similarly, the total CO2 emissions decrease by nearly 18% as compared to the case 

without ERD. By the year 2035, the total energy requirements and associated CO2 

emissions will be approximately 0.53 million MWh per year and 0.25 million metric tons 

per year, respectively when a positive displacement type ERD such as pressure/work 

exchanger is used. 
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(a) Without ERD 

 

(b) With ERD  

 

 

 

(c) Without ERD 

 

(d) With ERD

Figure 3.5: Energy and associated CO2 emissions for the seawater desalination option 

with and without using ERD 

 

Limited Supply 

 The energy requirements during the beginning of its operation phase is nearly 0.07 

million MWh per year and it gradually increases to 0.27 million MWh per year by the 
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year 2035 as shown in Figure 3.6. Similarly, the associated CO2 emissions increase from 

approximately 0.04 million metric tons per year in 2020 to 0.17 million metric tons per 

year by the end of 2035.   

 

Figure 3.6: Energy and associated CO2 emissions for the water conveyance from distant 

location with limited supply 

 

Full Supply 

 When the water from distant location is brought at its full flow rate (304,000 m3/d), it 

requires nearly 0.27 million MWh of electricity per year. The energy considered here is 

the energy required to pump water from the ground to the surface (0.11 MWh/y) and the 
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energy is required to transport water while the remaining is to pump the groundwater to 

the surface. When run at full supply, water conveyance from distant location generates 

nearly 0.17 million metric tons of CO2 emissions per year. These CO2 emissions are 

based on the electricity fuel resource mix for the state of Nevada for the year 2007. The 

total emission is likely to change with the change in fuel source type for the generation of 

electricity in future. The increase in use of renewable sources of energy such as 

hydroelectric, geothermal, solar/PV, etc. will decrease the total CO2 emissions because of 

their lower CO2 emission rates as compared to the fuels like coal, oil and gas. 

3.4.3 Comparison of the Two Supply Options 

Energy and CO2 Emissions Comparison 

 For comparison, the design with the inclusion of ERD is considered for the RO 

facility and the full supply scenario is considered for the long distance transport 

alternative. The comparison is based on the total design flow rate of 304,000 m3/d 

(90,000 afy) for both water supply options. The energy requirements for the RO facility 

only, represented by SWRO in Figure 3.7, indicate that it requires less energy to operate 

SWRO facility in California as compared to the water transport from a remote location in 

northern Nevada. However, seawater desalination option will also require lifting equal 

quantity of water from Lake Mead and transporting it to the delivery location in the LVV. 

Incorporating the energy requirements for water conveyance in the LVV lateral increases 

the total energy requirements for seawater desalination supply option. When compared 

with the energy requirements for the water conveyance from distant location, the energy 

requirement for the SWRO only is 5.1% lower whereas addition of energy requirements 

for water conveyance in the LVV lateral in SWRO energy requirements increases the 
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total energy requirements for seawater desalination supply option by 96%, which is 

almost double the energy requirement of water conveyance from distant location. 

 Similarly, only SWRO option has CO2 emissions 53.6% lower than the emissions 

associated with the water conveyance from distant location, and addition of CO2 

emissions generation during the water conveyance in the LVV lateral increases the total 

CO2 emissions for seawater desalination supply option by 47.5% compared to water 

conveyance option from distant location. The energy requirements for two components of 

seawater desalination supply option i.e. SWRO and water conveyance in the LVV lateral 

is nearly same (0.26 MWh/y and 0.27 MWh/y, respectively), however, the CO2 emissions 

associated with the SWRO facility is much lower. This is because, according to the 

electricity source distribution for the state of California, California uses a higher 

percentage of fuel source with lower CO2 emission rates. For the two components of 

seawater desalination to result in equivalent CO2 emissions, the percentage composition 

of renewable and non-renewable fuel sources for Nevada must be nearly 60% and 40%, 

respectively, unlike 15% and 85% currently. However, this change in fuel mix of Nevada 

will also lower the CO2 emissions associated with water conveyance from distant location 

increasing the percentage difference between the two supply alternatives. If California 

and Nevada is assumed to have same fuel mix, the percentage difference in associated 

CO2 emissions between the two supply alternatives increases in either case making water 

conveyance supply option from distant location more preferable in terms of carbon 

footprint. 
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Figure 3.7: Comparison of energy and associated CO2 emissions of seawater desalination 

and water conveyance option from distant location 

 

Cost Analysis and Comparison 

 The basic cost items for the RO facility used in the cost analysis of the facility for the 

comparison purpose is as shown in Table 3.9. The details of these cost items can be found 

in Watson et al. (2003). The unit cost of water for seawater desalination supply option is 

calculated to be $0.56/m3 using the net present value method. 
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Table 3.9: Estimated cost items for RO facility 

Cost Summary         
Project Description: Seawater desalination by reverse osmosis 

Desalting Plant  Type: SWRO Capacity: 60,800 m3/d (16 mgd) 
Annual Plant Factor: 90% Plant Life: 25 years 

Annual Production: 20 Mm3 
CAPITAL COSTS 

Capital Cost Items Estimated Cost 
Desalting plant $101,953,577 
Concentrate disposal $237,426 
Pretreatment Inc. in process 
Water intake $4,888,185 
Feed water pipes $1,536,287 
General site development $335,190 
Post-treatment Inc. in process 
Auxiliary equipment $6,997,088 
Building and structures Inc. in process 

Sub-total Direct Capital Cost (DCC) $115,947,752 
Engineering, financial and legal services, 
and contingencies $40,581,713 

Total Capital Costs $156,529,466 
ANNUAL COSTS 

Annual Cost Items Estimated Cost / Year 
Operation and Maintenance Labor $539,068 
Chemicals $1,796,892 
Electric power $6,930,871 
Repairs and spares $1,159,478 
 Membrane Replacement Cost $740,582 

Total Operation and Maintenance cost     $11,166,891 
 

  

In a similar way, the basic cost items for water conveyance from distant location for 

cost analysis are listed in Table 3.10. The unit cost of water using the net present value of 

all cost items divided by total volume of water produced during the entire life period is 

obtained as $0.68/m3.  
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Table 3.10: Estimated cost items for water conveyance from distant location 

Cost Summary            
Project Description: Water conveyance from distant location 

Project Type: Groundwater development Capacity: 304,100 m3/d 
Annual Plant Factor: 90% Project Life: 50 years 

Annual Production: 100 Mm3 
CAPITAL COSTS 

Capital Cost Items Estimated Cost* 
Pipelines  $2,189,839,830 
Pumping stations $145,975,262 
Regulating tanks $36,337,913 
Water treatment facilities $25,315,759 
Buried storage reservoir $17,589,219 
Groundwater production wells $133,624,599 

Total Capital Costs $2,548,682,582 
ANNUAL COSTS 

Annual Operation and Maintenance Cost Items Estimated Cost / Year 
Pipelines  $16,844,922 
Pumping stations $12,734,456 
Regulating tanks $269,170 
Water treatment facilities $2,001,455 
Buried storage reservoir $130,291 
Groundwater production wells $11,807,902 

Total Operation and Maintenance cost   $43,788,194 
*Cost items include Engineering, financial and legal services, and contingencies 

  

The unit cost comparison of the two water supply options using annualized method is 

shown in Figure 3.8. The unit cost for desalination supply is lower during the initial 

operational phases as compared to the water conveyance supply option from distant 

location due to small plant capacity and lower initial capital cost. The unit cost increases 

in future as the other phases are installed in future increasing the capital and operational 

cost. The unit cost obtained from this method cannot be compared with the values 

obtained from NPV method. 



www.manaraa.com

91 
 

 

Figure 3.8: Unit cost comparison of two water supply options 

 

3.5 Summary and Conclusions 

 This study explored the energy requirements, CO2 emissions as its consequence, and 

cost analysis of the two water supply options for the LVV. For the seawater desalination 

supply options, two cases with and without using ERD are investigated. The results 

showed that the use of pressure/work exchanger as the ERD can significantly reduce the 

energy consumption for the RO facility in seawater desalination supply option, 

consequently reducing the total CO2 emissions for this supply option. 
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considered- limited supply scenario and full supply scenario. In the limited supply 

scenario, the water from the distant location is transported only when the current water 

resources for the LVV will not be able to satisfy the water needs. In full supply scenario, 

the water is transported at its full capacity throughout the year.  

1

2

3

4

5

6

2013 2023 2033 2043 2053 2063

U
n

it
 c

o
st

 o
f 

w
a

te
r

($
/m

3
)

Year

Seawater desalination Water conveyance from distant location



www.manaraa.com

92 
 

 To compare the two supply alternatives, RO design using ERD and water conveyance 

from distant location at full supply is considered. Since, the desalination supply option 

also includes the cost, energy and emissions associated with the transport of water in one 

of the laterals in the LVV, the results show that the seawater desalination supply option 

for the LVV is more energy intensive and as its consequence, results in more CO2 

emissions. However, the unit cost of water is calculated to be cheaper for the desalination 

supply option as compared to the water conveyance option from distant location. Hence, 

if only cost comparison is done, the seawater desalination supply option seems more 

feasible as compared to the water conveyance supply option from distant location. But 

the CO2 emissions are higher for the seawater desalination supply option. The 

incorporation of cost incurred to the society due to emissions in the cost analysis may 

change the preference.  The findings of the research are study specific and different 

distance from source or different lift and conveyance combination may result different 

scenario. 

The RO facility is built in phases and requires lower initial capital and operational 

costs. If the population in LVV does not increase as predicted or water demand lowers 

considerably, the existing water resources may be sufficient to fulfill the water needs in 

the Valley. This will prolong the time lag between the installation of additional RO units 

resulting in lower cost, energy and emissions. Also, the drought condition is lowering the 

water level in Lake Mead. If the drought prolongs, limiting water withdrawal from Lake 

Mead, Nevada may not benefit from building a huge RO facility in California. 

 The energy requirement for the RO facility is based on the specific energy given by 

the RO design using IMSdesign by Hydranautics and it does not include the energy 
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requirements for pretreatment and post-treatment. Also, the environmental impact of 

brine disposal is not included in the cost analysis. For the CO2 analysis, electricity mix 

for the year 2007 for the state of Nevada and California is used as the energy source. 

Actual source of energy may differ when the plants will be in operation which will 

change the emissions due to each fuel source type eventually changing the total 

emissions. Additionally, the CO2 emissions are based on the operational energy 

requirements only. The life cycle energy analysis for the energy and corresponding CO2 

emissions will give a more accurate energy and associated CO2 emissions associated with 

it. The emissions generated during the other stages of life such as extraction, 

construction, decommission, etc. of the plant are not considered. Also, the total quantity 

of water delivered within the 50 years life time for seawater desalination option is less 

compared to the water transport option from the distant location.       

 Whether to choose a water supply alternative based on cost or carbon footprint 

depends solely on the decision makers’ goals and preferences. Considering that different 

criteria (energy use, associated emissions and cost) favor different projects, multi-criteria 

decision making framework that reflects society’s preferences may be used to choose the 

project.   
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CHAPTER 4 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

This study explored the interrelation between water and energy, specifically energy 

needs for water and CO2 emissions associated with it. For a region where water users are 

at a higher elevation than the source of supply, it often requires more energy to move 

water from source to the distribution points. The energy requirements grow with the 

distance and elevation, and so does the associated CO2 emissions. With the growing 

concern for emissions and associated environmental costs, it is necessary for a 

sustainable development to analyze the CO2 emissions associated with water production 

and transport. This helps in improving the existing water systems and making future 

water systems energy efficient. A System Dynamics model was developed to analyze the 

energy and associated CO2 emissions of lifting and moving water in the Las Vegas 

Valley water distribution laterals. The conclusions that can be drawn from this research 

are as follows: 

• The model simulations show that currently (2009) significant amount of energy is 

required (0.85 million MWh/y) to satisfy the water needs of the Las Vegas Valley 

and it will increase substantially (nearly 58%) by the year 2035 assuming no 

change in per capita demand of 908 lpcd (240 gpcd) from 2010 and onwards, 

provided that the population growth is as predicted by CBER.  

• When a conservation scenario is assumed in which per capita demand gradually 

lowers to 753 lpcd (199 gpcd) by 2035, the rise in energy requirements is 

approximately 32% as compared to the present energy requirements. 
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• Considerable amount of energy is required to pump water from Lake Mead to 

water treatment plants. It comprised nearly 35% of the total energy requirements. 

These energy requirements tend to rise as the Lake level declines. However, the 

major portion of total energy (65%) is consumed to move treated water in the 

distribution system. 

• Even a small change in population growth rate, can vary the future energy 

requirements and associated emissions by substantial amount. Variation in 

population growth rate by 0.5% can change the energy and CO2 emissions by 

around 12.8% as compared to the status quo. So, the future emissions can vary if 

there is different growth in population compared to what is currently forecasted 

by CBER. 

• The change in the lake levels considered in this study resulted in the change in 

energy requirements and CO2 release by 3.3% when compared with the total CO2 

emissions.  

• Conserving water from 908 lpcd (240 gpcd) to 753 lpcd (199 gpcd) results in a 

significant reduction in the energy consumption and associated CO2 emissions. 

The energy and CO2 emissions in the year 2035 decreased 16.5% as compared to 

the status quo scenario. Increasing the reuse rate of treated wastewater effluent 

lowered the energy requirements and associated CO2 emissions of moving water 

in Las Vegas Valley by considerable amount. At present the reuse rate is nearly 

30 MCM (22 mgd) and is expected to reach 77 MCM (56 mgd) by 2020 which 

will result in nearly 3.6% energy saving as compared with no change in reuse rate. 

However, if 20% of the treated wastewater is reused the energy use can lower by 
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9%, sufficient enough to light approximately 11,000 US homes on average for a 

year based on an average annual electricity consumption of 11,040 kWh for a US 

residential home in 2008 (USEIA, 2010). 

• A combination of multiple scenarios in which water demand is reduced to 753 

lpcd (199 gpcd) by 2035, wastewater reuse is increased to 77 MCM by 2020 and 

renewable energy sources is increased to 50%, resulted in the decrease of energy 

requirements by nearly 0.28 million MWh/y (20.7%) and CO2 emissions by 0.39 

million metric tons/y (46%) by 2035 when compared with the status quo.    

• Different scenarios were tested for energy and associated CO2 emissions for water 

production in the Las Vegas Valley including change in population growth rate, 

water conservation, increase in water reuse, change in the Lake level, change in 

fuel sources, and change in emission rates. Among these scenarios, water 

conservation turned out to be the most energy efficient. Although increasing reuse 

of treated wastewater lowers the return flow credits, but in turn it lowers the water 

demand to be fulfilled by Colorado River water, hence, omitting the need for 

lifting, treating and distributing Lake Mead water. 

• For the scenarios tested for future water supply options in the Las Vegas Valley, 

the seawater desalination supply option is more energy intensive and as its 

consequence results in more CO2 emissions as compared to the water conveyance 

supply option from distant location. Seawater desalination supply option requires 

nearly 0.53 million MWh/y which is almost 96% higher than energy requirements 

for water conveyance supply option (0.27 million MWh/y) from distant location. 

Similarly, associated CO2 emissions for seawater desalination supply option (0.25 
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million metric tons) is 47.5 % higher than water conveyance supply option (0.17 

million metric tons) from distant location. The energy and associated CO2 

emissions are higher for seawater desalination supply option because this supply 

option also includes the energy and emissions associated with the lifting of water 

from Lake Mead and transport of water in one of the laterals in LVV.  

• Cost comparisons show that the unit cost of water is cheaper for the desalination 

supply option ($0.56/m3) as compared to the water conveyance supply option 

($0.68/m3) from distant location.  

• The seawater desalination supply option seems more feasible as compared to the 

water conveyance supply option from distant location, if only cost comparison is 

done. But the energy consumption and CO2 emissions are higher for the seawater 

desalination supply option. The inclusion of the cost incurred to the society due to 

CO2 emissions in the cost analysis may change the preference.   

 

Recommendations 

This study is focused mainly on the energy consumption and CO2 emissions as its 

consequence in moving water in the Las Vegas Valley, and cost, energy and emission 

comparison for two supply options for the Las Vegas Valley. Energy calculation for 

moving water depends mainly on the flow rate and the total dynamic head to lift the 

water. In this study, the flow rate in each of the pumping stations is based on the demand, 

capacity of water treatment plants and capacity of reservoirs in the distribution system. 

The more precise prediction of energy requirements in each of the pumping stations 

could be achieved if the water flow equations are developed based on the historical or 
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actual flow rate at these stations. Also, the energy required in treating water and 

wastewater in water and wastewater treatment facilities could be significant and is 

recommended for further study. 

CO2 emissions depend on the fuel type used in the generation of electricity for water 

production. Since, actual source of energy for electricity used by SNWA in water 

distribution system was not certain, electricity mix for state of Nevada was used as the 

energy source. The more detail study determining the fuel source for water production 

will provide more accurate CO2 emission estimates. Moreover, the state’s electricity 

resource mix is assumed to be constant in future. The variation in future electricity mix is 

recommended for further study. Also, this study considers only operational energy 

requirements. The consideration of life cycle energy requirements is necessary for better 

emission analysis. Emissions can be both direct and indirect. Direct emissions are 

referred to those that are released during the operation phase, whereas indirect emissions 

are released during non-operational phase of the plant life cycle such as emissions 

associated with the extraction, processing and transportation of fuels, building of power 

plants, production of electricity, waste disposal and finally decommissioning of the plant 

at the end of its life. 

One important element in determining total CO2 emissions is emission factor. The 

emission factors used in this study are based on the literature review. The emission 

factors can be different for different locations based on electricity generating plant 

efficiency, its technological options and carbon/heat content of the fuel when electricity 

generation is due to direct combustion of fuel. To account for the uncertainty associated 

with emission factors, uncertainty analysis was done using numerous uniformly 
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distributed emission factors. Site specific emission factor of the electricity generation 

plant for water production will be more appropriate for CO2 emission calculation. 

The RO facility is built in phases and requires lower initial capital and operational 

costs. If the population in LVV does not increase as forecasted or water demand lowers 

significantly, the existing water resources may be sufficient to fulfill the water needs in 

the Valley. This will prolong the time lag between the installation of additional RO units 

resulting lower cost, energy and related emissions. Also, the drought is declining the 

water level in Lake Mead. Prolonging drought may limit water withdrawal from Lake 

Mead making RO plant in California unfeasible for Nevada. Hence, climate change and 

its impact on the availability of water in Lake Mead is important consideration in the 

decision for future supply options. 

Also, the withdrawal of groundwater in the water conveyance supply option from 

distant location may lower the groundwater requiring more pumping energy and 

associated CO2 emissions. The rate of groundwater recharge in the northern counties is an 

essential factor to be determined. These recommendations can be summed up as follows: 

• The use of historical or current flow rate data at pumping stations to determine the 

pumping energy requirements. 

• Inclusion of energy and associated CO2 emissions for treating water and 

wastewater in the water and wastewater treatment facilities, respectively. 

• Determination and use of actual source of energy for electricity generation used 

for water production. 

• Consideration of life cycle energy requirements and emissions. 

• Analyzing the uncertainty in emission factor. 
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• Study the impact of climate change and rate of groundwater recharge on the 

availability of future supply options considered.  
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APPENDIX 

Membrane Specification Sheet
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RO Design using IMSdesign by Hydranautics 

RO Design without using ERD 

BASIC DESIGN 
 

RO program licensed  
Calculation created Eleeja Shrestha 
Project name:  SWRO Permeate flow:  60829.00 m3/d 
HP Pump flow:  4693.6 m3/hr Raw water flow: 112646.3 m3/d 
Feed pressure:  63.6 bar Permeate recovery:  54.0 % 
Feedwater 21.0 C(70F)    
Feed water pH:  7.9  Element age: 5.0 years 
Chem dose, ppm  0.0 H2SO4 Flux decline % per  6.9  
    Fouling factor:  0.70  
    Salt passage increase,  10.0  
Average flux rate:  13.6 lm2hr Feed type: Seawater - open intake 
 
Stage Perm. Flow/Vessel Flux Beta Conc.andThrot. Element Elem. Array 

 Flow Feed Conc   Pressures Type No.  
 m3/hr m3/hr m3/hr l/m2-hr  bar bar    

1-1 2158.5 9.4 5.1 19.4 1.02 62.3 0.0 SWC5 3000 500x6 
1-2 376.1 7.6 6.5 5.0 1.01 60.7 0.0 SWC5 2004 334x6 

 
 Raw water Feed water Permeate Concentrate 

Ion mg/l meq/l mg/l meq/l mg/l meq/l mg/l meq/l 
Ca 200.0 10.0 200.0 10.0 0.399 0.0 434.3 21.7 
Mg 650.0 53.5 650.0 53.5 1.297 0.1 1411.5 116.2 
Na 12237.5 532.1 12237.5 532.1 116.960 5.1 26466.0 1150.7 
K 190.0 4.9 190.0 4.9 2.268 0.1 410.4 10.5 
NH4 0.1 0.0 0.1 0.0 0.001 0.0 0.2 0.0 
Ba 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 
Sr 7.400 0.2 7.400 0.2 0.015 0.0 16.070 0.4 
CO3 8.0 0.3 8.0 0.3 0.008 0.0 17.5 0.6 
HCO3 110.0 1.8 110.0 1.8 1.876 0.0 236.9 3.9 
SO4 3000.0 62.5 3000.0 62.5 7.136 0.1 6513.4 135.7 
Cl 19000.0 536.0 19000.0 536.0 180.435 5.1 41092.5 1159.2 
F 0.9 0.0 0.9 0.0 0.017 0.0 1.9 0.1 
NO3 0.0 0.0 0.0 0.0 0.000 0.0 0.0 0.0 
B 2.40  2.40  0.688  4.41  
SiO2 3.5  3.5  0.02  7.6  
CO2 0.76  0.76  0.76  0.76  
TDS 35409.8  35409.8  311.1  76612.7  
pH 7.9  7.9  6.6  8.5  
 
 Raw water Feed water Concentrate 
CaSO4 / Ksp * 100: 12% 12% 32% 
SrSO4 / Ksp * 100: 28% 28% 73% 
BaSO4 / Ksp * 100: 0% 0% 0% 
SiO2 saturation: 3% 3% 6% 
Langelier Saturation Index 0.49 0.49 1.77 
Stiff and Davis Saturation -0.42 -0.42 0.76 
Ionic strength 0.66 0.66 1.44 
Osmotic pressure 25.7 bar 25.7 bar 55.7 bar 
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BASIC DESIGN 
 

RO program licensed  
Calculation created Eleeja Shrestha 
Project name:  SWRO Permeate flow:  60829.00 m3/d 
HP Pump flow:  4693.6 m3/hr Raw water flow: 112646.3 m3/d 
Feed pressure:  63.6 bar Permeate recovery:  54.0 % 
Feedwater 21.0 C(70F)    
Feed water pH:  7.9  Element age: 5.0 years 
Chem dose, ppm  0.0 H2SO4 Flux decline % per  6.9  
    Fouling factor:  0.70  
    Salt passage increase,  10.0  
Average flux rate:  13.6 lm2hr Feed type: Seawater - open intake 
 
Stage Perm. Flow/Vessel Flux Beta Conc.andThrot. Element Elem. Array 

 Flow Feed Conc   Pressures Type No.  
 m3/hr m3/hr m3/hr l/m2-hr  bar bar    

1-1 2158.5 9.4 5.1 19.4 1.02 62.3 0.0 SWC5 3000 500x6 
1-2 376.1 7.6 6.5 5.0 1.01 60.7 0.0 SWC5 2004 334x6 

 
St Ele Fee Pre Perm Perm Bet Per Con Concentrate saturation levels 
 no. pres drop flow Flux  sal osm CaSO SrSO BaSO SiO Lang
  bar bar m3/h lm2h  TDS pres      

 
1-1 1 63.6 0.3 1.1 30.1 1.05 90.5 29.2 14 33 0 3 1.2 
1-1 2 63.3 0.3 0.9 25.4 1.04 105.2 33.0 16 38 0 3 1.2 
1-1 3 63.0 0.2 0.8 20.9 1.04 122.0 36.9 19 44 0 4 1.3 
1-1 4 62.8 0.2 0.6 16.7 1.03 141.5 40.7 21 49 0 4 1.4 
1-1 5 62.6 0.2 0.5 13.1 1.02 163.7 44.3 24 55 0 5 1.4 
1-1 6 62.4 0.2 0.4 10.1 1.02 188.3 47.6 26 60 0 5 1.5 
 
1-2 1 62.1 0.2 0.3 7.8 1.01 206.6 49.6 27 63 0 5 1.5 
1-2 2 61.8 0.2 0.2 6.3 1.01 225.8 51.2 29 66 0 5 1.5 
1-2 3 61.6 0.2 0.2 5.2 1.01 246.0 52.6 30 68 0 5 1.5 
1-2 4 61.4 0.2 0.2 4.2 1.01 266.9 53.8 30 70 0 6 1.6 
1-2 5 61.2 0.2 0.1 3.5 1.01 288.6 54.8 31 71 0 6 1.6 
1-2 6 60.9 0.2 0.1 2.8 1.01 311.0 55.7 32 73 0 6 1.6 
 
Stage NDP 

 bar 
1-1 26.5 
1-2 10.2 
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Figure A1: Schematic of two stage RO system without using ERD 

  



www.manaraa.com

113 
 

Power Calculation for RO Design without using ERD 

BASIC DESIGN 
 

RO program licensed  
Calculation created Eleeja Shrestha 
Project name:  SWRO Permeate flow:  60829.00 m3/d 
HP Pump flow:  4693.6 m3/hr Raw water flow: 112646.3 m3/d 
Feed pressure:  63.6 bar Permeate recovery:  54.0 % 
Feedwater 21.0 C(70F)    
Feed water pH:  7.9  Element age: 5.0 years 
Chem dose, ppm  0.0 H2SO4 Flux decline % per  6.9  
    Fouling factor:  0.70  
    Salt passage increase,  10.0  
Average flux rate:  13.6 lm2hr Feed type: Seawater - open intake 
 
Stage Perm. Flow/Vessel Flux Beta Conc.andThrot. Element Elem. Array 

 Flow Feed Conc   Pressures Type No.  
 m3/hr m3/hr m3/hr l/m2-hr  bar bar    

1-1 2158.5 9.4 5.1 19.4 1.02 62.3 0.0 SWC5 3000 500x6 
1-2 376.1 7.6 6.5 5.0 1.01 60.7 0.0 SWC5 2004 334x6 

 
 
 
 

CALCULATION OF POWER REQUIREMENT 
 

 Main Pump   
Feed pressure, bar 63.6   
Concentrate pressure, bar 60.7   
Permeate flow,m3/d 60829.0   
Recovery ratio, % 54.0   
Pump efficiency, % 83.0   
Motor efficiency, % 93.0   
ERT efficiency, % 0.0   
ERT backpressure, bar 0.0   
Pumping energy, kwhr/m3 4.33   
Pumping power, kw 10979.3   
Recovered power, kw 0.0   
Power requirement, kw 10979.3   
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RO Design with using ERD 

BASIC DESIGN WITH Pressure/Work Exchanger 
 

RO program licensed  
Calculation created Eleeja Shrestha 
Project name:  SWRO Permeate flow:  60829.00 m3/d 
HP Pump flow:  61347.2 m3/hr Raw water flow: 112646.3 m3/d 
Feed pressure:  65.6 bar Permeate recovery:  54.0 % 
Feedwater 21.0 C(70F)    
Feed water pH:  7.9  Element age: 5.0 years 
Chem dose, ppm  0.0 H2SO4 Flux decline % per  6.9  
    Fouling factor:  0.70  
    Salt passage  10.0  
Average flux rate:  13.6 lm2hr Feed type: Seawater - open intake 
 
Stage Perm. Flow/Vessel Flux Beta Conc.andThrot. Element Elem. Array 

 Flow Feed Conc   Pressures Type No.  
 m3/hr m3/hr m3/hr l/m2-hr  bar bar    

1-1 2166.6 9.4 5.1 19.4 1.02 64.3 0.0 SWC5 3000 500x6 
1-2 368.0 7.6 6.5 4.9 1.01 62.8 0.0 SWC5 2004 334x6 

 
 Raw water Adjusted Feed water Permeate Concentrate ERD Reject 

Ion mg/l mg/l mg/l mg/l mg/l mg/l 
Ca 200.0 200.0 206.8 0.414 449.0 434.2 
Mg 650.0 650.0 672.0 1.345 1459.4 1411.3 
Na 12237.5 12237.5 12649.2 121.238 27356.0 26458.0 
K 190.0 190.0 196.4 2.351 424.1 410.2 
NH4 0.1 0.1 0.1 0.001 0.2 0.2 
Ba 0.000 0.000 0.000 0.000 0.000 0.0 
Sr 7.400 7.400 7.651 0.015 16.615 16.1 
CO3 8.0 8.0 8.5 0.008 18.6 17.9 
HCO3 110.0 110.0 113.7 1.945 244.8 236.8 
SO4 3000.0 3000.0 3101.7 7.399 6734.1 6512.3 
Cl 19000.0 19000.0 19639.3 187.036 42474.6 41080.2 
F 0.9 0.9 0.9 0.018 2.0 1.9 
NO3 0.0 0.0 0.0 0.000 0.0 0.0 
B 2.40 2.40 2.46 0.701 4.52 4.4 
SiO2 3.5 3.5 3.6 0.03 7.8 7.6 
CO2 0.76 0.78 0.78 0.78 0.78 0.78 
TDS 35409.8 35409.8 36602.4 322.5 79191.9 76591.2 
pH 7.9 7.9 7.9 6.6 8.5  
 
 Raw water Feed water Concentrate 
CaSO4 / Ksp * 100: 12% 13% 33% 
SrSO4 / Ksp * 100: 28% 29% 76% 
BaSO4 / Ksp * 100: 0% 0% 0% 
SiO2 saturation: 3% 3% 6% 
Langelier Saturation Index 0.49 0.52 1.80 
Stiff and Davis Saturation -0.42 -0.39 0.79 
Ionic strength 0.66 0.69 1.49 
Osmotic pressure 25.7 bar 26.6 bar 57.6 bar 
 
H.P. Differential of Pressure/Work Exchanger: 0.5 bar  Pressure/Work Exchanger 1  
Pressure/Work Exchanger Pump Boost 1.8 bar  Volumetric Mixing: 6  
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BASIC DESIGN WITH Pressure/Work Exchanger 
 

RO program licensed  
Calculation created Eleeja Shrestha 
Project name:  SWRO Permeate flow:  60829.00 m3/d 
HP Pump flow:  61347.2 m3/hr Raw water flow: 112646.3 m3/d 
Feed pressure:  65.6 bar Permeate recovery:  54.0 % 
Feedwater 21.0 C(70F)    
Feed water pH:  7.9  Element age: 5.0 years 
Chem dose, ppm  0.0 H2SO4 Flux decline % per  6.9  
    Fouling factor:  0.70  
    Salt passage  10.0  
Average flux rate:  13.6 lm2hr Feed type: Seawater - open intake 
 
Stage Perm. Flow/Vessel Flux Beta Conc.andThrot. Element Elem. Array 

 Flow Feed Conc   Pressures Type No.  
 m3/hr m3/hr m3/hr l/m2-hr  bar bar    

1-1 2166.6 9.4 5.1 19.4 1.02 64.3 0.0 SWC5 3000 500x6 
1-2 368.0 7.6 6.5 4.9 1.01 62.8 0.0 SWC5 2004 334x6 

 
St Ele Fee Pre Perm Perm Bet Per Con Concentrate saturation levels 
 no. pres drop flow Flux  sal osm CaSO SrSO BaSO SiO Lang
  bar bar m3/h lm2h  TDS pres      

 
1-1 1 65.6 0.3 1.1 30.6 1.05 92.2 30.3 15 34 0 3 1.2 
1-1 2 65.3 0.3 1.0 25.7 1.04 107.6 34.2 17 40 0 4 1.3 
1-1 3 65.1 0.2 0.8 20.9 1.04 125.3 38.3 20 46 0 4 1.3 
1-1 4 64.8 0.2 0.6 16.6 1.03 145.7 42.3 23 52 0 4 1.4 
1-1 5 64.6 0.2 0.5 12.9 1.02 168.9 46.0 25 58 0 5 1.5 
1-1 6 64.5 0.2 0.4 9.9 1.02 194.6 49.3 27 63 0 5 1.5 
 
1-2 1 64.1 0.2 0.3 7.6 1.01 213.7 51.4 29 66 0 5 1.5 
1-2 2 63.9 0.2 0.2 6.2 1.01 233.8 53.0 30 68 0 5 1.6 
1-2 3 63.6 0.2 0.2 5.1 1.01 254.7 54.5 31 71 0 6 1.6 
1-2 4 63.4 0.2 0.2 4.1 1.01 276.5 55.7 32 73 0 6 1.6 
1-2 5 63.2 0.2 0.1 3.4 1.01 299.1 56.7 33 75 0 6 1.6 
1-2 6 63.0 0.2 0.1 2.8 1.01 322.3 57.6 33 76 0 6 1.6 
 

Stage NDP 
 bar 

1-1 27.2 
1-2 10.4 
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Figure A2: Schematic of two stage RO system with pressure/work exchanger as ERD 
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Power Calculation for RO Design with using ERD 

 
BASIC DESIGN WITH Pressure/Work Exchanger 

 
RO program licensed  
Calculation created Eleeja Shrestha 
Project name:  SWRO Permeate flow:  60829.00 m3/d 
HP Pump flow:  61347.2 m3/hr Raw water flow: 112646.3 m3/d 
Feed pressure:  65.6 bar Permeate recovery:  54.0 % 
Feedwater 21.0 C(70F)    
Feed water pH:  7.9  Element age: 5.0 years 
Chem dose, ppm  0.0 H2SO4 Flux decline % per  6.9  
    Fouling factor:  0.70  
    Salt passage  10.0  
Average flux rate:  13.6 lm2hr Feed type: Seawater - open intake 
 
Stage Perm. Flow/Vessel Flux Beta Conc.andThrot. Element Elem. Array 

 Flow Feed Conc   Pressures Type No.  
 m3/hr m3/hr m3/hr l/m2-hr  bar bar    

1-1 2166.6 9.4 5.1 19.4 1.02 64.3 0.0 SWC5 3000 500x6 
1-2 368.0 7.6 6.5 4.9 1.01 62.8 0.0 SWC5 2004 334x6 

 
 
 
 

CALCULATION OF POWER REQUIREMENT 
 

 Main Pump ERD Boost   
Feed pressure, bar 65.6 65.6   
Concentrate pressure, bar 62.8 63.8   
Permeate flow,m3/d 60829.0 60829.0   
H.P. Differential of Pressure/Work 
Exchanger, Bar 

 0.5   

Recovery ratio, % 54.0    
Pump efficiency, % 83.0 83.0   
Motor efficiency, % 93.0 93.0   
ERT efficiency, % 0.0    
ERT backpressure, bar 0.0    
Pumping energy, kwhr/m3 2.54    
Pumping power, kw 6445.9    
Recovered power, kw 0.0    
Power requirement, kw 6445.9    

 
 
 

H.P. Differential of Pressure/Work  0.5 bar Pressure/Work Exchanger 1 %  
Pressure/Work Exchanger Pump  1.8 bar Volumetric Mixing: 6 %  
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Table A1: Cost of seawater desalination supply option using Net Present Value method 

Capacity  
(m3/y) 

Fiscal 
Year 

Year Total Capital 
Cost 

No of  
Desalination  

Plant 

Dismantling  
Cost 

Salvage 
Value 

Annual O & M Cost 

NPV Operating & 
Maintenance 
Cost/ Plant 

Yearly 
Operating & 
Maintenance 

Cost 

Electrical cost 
for moving 

water in valley 

Water  
treatment  

cost 

  2011 0 $164,806,654 1             $164,796,699 

  2012 1                   

19,982,406 2013 2         $12,035,121 $12,035,121 $3,922,077 $378,463 $14,538,719 

19,982,406 2014 3         $12,339,282 $12,339,282 $4,100,227 $395,653 $14,135,164 

19,982,406 2015 4         $12,651,129 $12,651,129 $4,286,592 $413,637 $13,743,936 

19,982,406 2016 5         $12,970,858 $12,970,858 $4,481,174 $432,413 $13,363,830 

19,982,406 2017 6 $203,610,771 2     $13,298,667 $13,298,667 $4,684,711 $452,053 $156,534,115 

19,982,406 2018 7         $13,634,760 $13,634,760 $4,897,502 $472,587 $12,639,367 

39,964,812 2019 8         $13,979,348 $27,958,696 $10,282,372 $988,106 $24,612,972 

39,964,812 2020 9         $14,332,644 $28,665,288 $10,749,620 $1,033,007 $23,941,153 

39,964,812 2021 10         $14,694,869 $29,389,738 $11,237,694 $1,079,909 $23,288,694 

39,964,812 2022 11 $241,569,661 3     $15,066,248 $30,132,497 $11,748,123 $1,128,960 $149,913,275 

39,964,812 2023 12         $15,447,014 $30,894,027 $12,281,755 $1,180,240 $22,043,690 

59,947,217 2024 13         $15,837,402 $47,512,205 $19,389,448 $1,850,775 $32,233,965 

59,947,217 2025 14         $16,237,656 $48,712,968 $20,270,401 $1,934,865 $31,367,332 

59,947,217 2026 15         $16,648,026 $49,944,078 $21,190,897 $2,022,728 $30,525,809 

59,947,217 2027 16 $284,639,577 4     $17,068,767 $51,206,301 $22,153,423 $2,114,604 $141,757,972 

59,947,217 2028 17         $17,500,141 $52,500,424 $23,159,692 $2,210,655 $28,918,556 

79,929,623 2029 18         $17,942,418 $71,769,670 $32,582,512 $3,081,426 $37,638,844 

79,929,623 2030 19         $18,395,871 $73,583,486 $34,062,742 $3,221,415 $36,643,329 

79,929,623 2031 20         $18,860,785 $75,443,141 $35,609,709 $3,367,717 $35,676,652 

79,929,623 2032 21 $332,820,517 5     $19,337,449 $77,349,795 $37,227,175 $3,520,685 $132,640,395 
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Capacity  
(m3/y) 

Fiscal 
Year 

Year Total Capital 
Cost 

No of  
Desalination  

Plant 

Dismantling  
Cost 

Salvage 
Value 

Annual O & M Cost 

NPV Operating & 
Maintenance 
Cost/ Plant 

Yearly 
Operating & 
Maintenance 

Cost 

Electrical cost 
for moving 

water in valley 

Water  
treatment  

cost 

79,929,623 2033 22         $19,826,159 $79,304,635 $38,918,133 $3,680,604 $33,828,920 

99,912,029 2034 23         $20,327,220 $101,636,099 $51,456,769 $4,809,734 $41,338,594 

99,912,029 2035 24         $20,840,944 $104,204,721 $53,794,333 $5,028,229 $40,264,353 

99,912,029 2036 25         $21,367,652 $106,838,258 $56,237,539 $5,256,599 $39,221,065 

99,912,029 2037 26 $386,112,482 5 $38,611,248   $21,907,671 $109,538,353 $58,791,995 $5,495,367 $131,567,468 

99,912,029 2038 27         $22,461,337 $112,306,685 $61,462,480 $5,744,981 $37,225,557 

99,912,029 2039 28         $23,028,996 $115,144,982 $64,254,264 $6,005,933 $36,270,909 

99,912,029 2040 29         $23,611,002 $118,055,009 $67,173,060 $6,278,757 $35,343,934 

99,912,029 2041 30         $24,207,716 $121,038,581 $70,224,021 $6,563,934 $34,443,520 

99,912,029 2042 31 $444,515,472 5 $44,451,547   $24,819,511 $124,097,557 $73,413,774 $6,862,085 $113,884,676 

99,912,029 2043 32         $25,446,768 $127,233,840 $76,748,414 $7,173,778 $32,720,229 

99,912,029 2044 33         $26,089,877 $130,449,386 $80,234,520 $7,499,629 $31,895,462 

99,912,029 2045 34         $26,749,240 $133,746,198 $83,879,129 $7,840,296 $31,094,340 

99,912,029 2046 35         $27,425,266 $137,126,329 $87,688,967 $8,196,407 $30,315,992 

99,912,029 2047 36 $508,029,486 5 $50,802,949   $28,118,377 $140,591,886 $91,672,020 $8,568,708 $98,151,582 

99,912,029 2048 37         $28,829,005 $144,145,026 $95,835,991 $8,957,920 $28,825,452 

99,912,029 2049 38         $29,557,593 $147,787,964 $100,189,100 $9,364,811 $28,111,748 

99,912,029 2050 39         $30,304,594 $151,522,969 $104,740,056 $9,790,195 $27,418,268 

99,912,029 2051 40         $31,070,474 $155,352,368 $109,497,486 $10,234,878 $26,744,314 

99,912,029 2052 41 $576,654,525 5 $57,665,453   $31,855,709 $159,278,546 $114,471,132 $10,699,772 $84,268,692 

99,912,029 2053 42         $32,660,790 $163,303,949 $119,670,694 $11,185,782 $25,452,947 

99,912,029 2054 43         $33,486,217 $167,431,085 $125,106,432 $11,693,868 $24,834,302 

99,912,029 2055 44         $34,332,505 $171,662,525 $130,789,163 $12,225,040 $24,232,973 
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Capacity  
(m3/y) 

Fiscal 
Year 

Year Total Capital 
Cost 

No of  
Desalination  

Plant 

Dismantling  
Cost 

Salvage 
Value 

Annual O & M Cost 

NPV Operating & 
Maintenance 
Cost/ Plant 

Yearly 
Operating & 
Maintenance 

Cost 

Electrical cost 
for moving 

water in valley 

Water  
treatment  

cost 

99,912,029 2056 45         $35,200,181 $176,000,905 $136,729,835 $12,780,323 $23,648,389 

99,912,029 2057 46 $650,390,589 5 $65,039,059   $36,089,786 $180,448,928 $142,940,441 $13,360,836 $72,114,117 

99,912,029 2058 47         $37,001,873 $185,009,365 $149,433,146 $13,967,718 $22,527,621 

99,912,029 2059 48         $37,937,011 $189,685,056 $156,220,766 $14,602,167 $21,990,416 

99,912,029 2060 49         $38,895,783 $194,478,915 $163,316,757 $15,265,438 $21,468,053 

99,912,029 2061 50         $39,878,785 $199,393,927 $170,735,002 $15,958,832 $20,960,065 

99,912,029 2062 51       $1,245,603,678 $40,886,631 $204,433,155 $178,490,156 $16,683,717 -$43,328,073 

            Net Present Value $2,201,382,511 

            Total volume of water produced (m3) 3,916,551,538 

            Unit cost of water ($/m3) $0.56 
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Table A2: Cost of water conveyance supply option from distant location using Net 

Present Value method 

Capacity 
(m3/y) 

Fiscal 
Year 

Year Total Capital 
Costs 

Operating & 
Maintenance 

Cost 
NPV 

  2011 0 $2,683,455,453   $2,683,293,364 
  2012 1       
  2013 2       
  2014 3       
  2015 4       
  2016 5       
  2017 6       
  2018 7       
  2019 8       

99,912,029 2020 9   $56,201,912 $33,265,957 
99,912,029 2021 10   $57,622,287 $32,175,338 
99,912,029 2022 11   $59,078,560 $31,121,948 
99,912,029 2023 12   $60,571,636 $30,102,392 
99,912,029 2024 13   $62,102,447 $29,116,180 
99,912,029 2025 14   $63,671,945 $28,162,278 
99,912,029 2026 15   $65,281,108 $27,239,219 
99,912,029 2027 16   $66,930,940 $26,347,203 
99,912,029 2028 17   $68,622,467 $25,484,051 
99,912,029 2029 18   $70,356,744 $24,649,144 
99,912,029 2030 19   $72,134,851 $23,841,591 
99,912,029 2031 20   $73,957,896 $23,060,278 
99,912,029 2032 21   $75,827,013 $22,304,989 
99,912,029 2033 22   $77,743,369 $21,574,253 
99,912,029 2034 23   $79,708,156 $20,867,440 
99,912,029 2035 24   $81,722,598 $20,183,784 
99,912,029 2036 25   $83,787,951 $19,522,402 
99,912,029 2037 26   $85,905,501 $18,882,933 
99,912,029 2038 27   $88,076,567 $18,264,295 
99,912,029 2039 28   $90,302,503 $17,665,924 
99,912,029 2040 29   $92,584,693 $17,087,157 
99,912,029 2041 30   $94,924,561 $16,527,287 
99,912,029 2042 31   $97,323,563 $15,985,888 
99,912,029 2043 32   $99,783,195 $15,462,163 
99,912,029 2044 33   $102,304,989 $14,955,596 
99,912,029 2045 34   $104,890,515 $14,465,626 
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Capacity 
(m3/y) 

Fiscal 
Year 

Year Total Capital 
Costs 

Operating & 
Maintenance 

Cost 
NPV 

99,912,029 2046 35   $107,541,384 $13,991,674 
99,912,029 2047 36   $110,259,248 $13,533,316 
99,912,029 2048 37   $113,045,800 $13,089,942 
99,912,029 2049 38   $115,902,776 $12,661,094 
99,912,029 2050 39   $118,831,955 $12,246,296 
99,912,029 2051 40   $121,835,163 $11,845,070 
99,912,029 2052 41   $124,914,269 $11,457,023 
99,912,029 2053 42   $128,071,194 $11,081,672 
99,912,029 2054 43   $131,307,902 $10,718,618 
99,912,029 2055 44   $134,626,411 $10,367,459 
99,912,029 2056 45   $138,028,787 $10,027,796 
99,912,029 2057 46   $141,517,151 $9,699,278 
99,912,029 2058 47   $145,093,676 $9,381,514 
99,912,029 2059 48   $148,760,589 $9,074,160 
99,912,029 2060 49   $152,520,174 $8,776,876 
99,912,029 2061 50   $156,374,775 $8,489,328 
99,912,029 2062 51   $160,326,792 $8,211,207 
99,912,029 2063 52   $164,378,687 $7,942,194 
99,912,029 2064 53   $168,532,985 $7,681,996 
99,912,029 2065 54   $172,792,273 $7,430,321 
99,912,029 2066 55   $177,159,205 $7,186,892 
99,912,029 2067 56   $181,636,502 $6,951,438 
99,912,029 2068 57   $186,226,951 $6,723,698 
99,912,029 2069 58   $190,933,414 $6,503,419 

Net Present Value $3,330,562,719 

Total volume of water produced (m3) 4,895,689,423 

Unit cost of water ($/m3) $0.68 
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